If [tex]\( g(x) \)[/tex] is an odd function, which function must be an even function?

A. [tex]\( f(x) = g(x) + 2 \)[/tex]
B. [tex]\( f(x) = g(x) + g(x) \)[/tex]
C. [tex]\( f(x) = g(x)^2 \)[/tex]
D. [tex]\( f(x) = -g(x) \)[/tex]



Answer :

Let's analyze each option to determine which one must be an even function, given that [tex]\( g(x) \)[/tex] is an odd function. Remember that a function [tex]\( g(x) \)[/tex] is odd if [tex]\( g(-x) = -g(x) \)[/tex], and a function [tex]\( f(x) \)[/tex] is even if [tex]\( f(-x) = f(x) \)[/tex].

### Option 1: [tex]\( f(x) = g(x) + 2 \)[/tex]

To check if [tex]\( f(x) = g(x) + 2 \)[/tex] is an even function, we need to evaluate [tex]\( f(-x) \)[/tex]:
[tex]\[ f(-x) = g(-x) + 2 \][/tex]
Since [tex]\( g(x) \)[/tex] is odd, [tex]\( g(-x) = -g(x) \)[/tex]. Thus,
[tex]\[ f(-x) = -g(x) + 2 \][/tex]
Comparing [tex]\( f(-x) \)[/tex] with [tex]\( f(x) \)[/tex]:
[tex]\[ f(x) = g(x) + 2 \quad \text{and} \quad f(-x) = -g(x) + 2 \][/tex]
Since [tex]\( f(-x) \ne f(x) \)[/tex], [tex]\( f(x) = g(x) + 2 \)[/tex] is not an even function.

### Option 2: [tex]\( f(x) = g(x) + g(x) \)[/tex]

To check if [tex]\( f(x) = g(x) + g(x) \)[/tex] is an even function:
[tex]\[ f(x) = 2g(x) \][/tex]
We need to evaluate [tex]\( f(-x) \)[/tex]:
[tex]\[ f(-x) = 2g(-x) = 2(-g(x)) = -2g(x) \][/tex]
Comparing [tex]\( f(-x) \)[/tex] with [tex]\( f(x) \)[/tex]:
[tex]\[ f(x) = 2g(x) \quad \text{and} \quad f(-x) = -2g(x) \][/tex]
Since [tex]\( f(-x) \ne f(x) \)[/tex], [tex]\( f(x) = g(x) + g(x) \)[/tex] is not an even function.

### Option 3: [tex]\( f(x) = g(x)^2 \)[/tex]

To check if [tex]\( f(x) = g(x)^2 \)[/tex] is an even function:
[tex]\[ f(x) = g(x)^2 \][/tex]
We need to evaluate [tex]\( f(-x) \)[/tex]:
[tex]\[ f(-x) = (g(-x))^2 \][/tex]
Since [tex]\( g(x) \)[/tex] is odd, [tex]\( g(-x) = -g(x) \)[/tex]. Thus,
[tex]\[ f(-x) = (-g(x))^2 = g(x)^2 \][/tex]
Comparing [tex]\( f(-x) \)[/tex] with [tex]\( f(x) \)[/tex]:
[tex]\[ f(x) = g(x)^2 \quad \text{and} \quad f(-x) = g(x)^2 \][/tex]
Since [tex]\( f(-x) = f(x) \)[/tex], [tex]\( f(x) = g(x)^2 \)[/tex] is indeed an even function.

### Option 4: [tex]\( f(x) = -g(x) \)[/tex]

To check if [tex]\( f(x) = -g(x) \)[/tex] is an even function:
[tex]\[ f(x) = -g(x) \][/tex]
We need to evaluate [tex]\( f(-x) \)[/tex]:
[tex]\[ f(-x) = -g(-x) \][/tex]
Since [tex]\( g(x) \)[/tex] is odd, [tex]\( g(-x) = -g(x) \)[/tex]. Thus,
[tex]\[ f(-x) = -(-g(x)) = g(x) \][/tex]
Comparing [tex]\( f(-x) \)[/tex] with [tex]\( f(x) \)[/tex]:
[tex]\[ f(x) = -g(x) \quad \text{and} \quad f(-x) = g(x) \][/tex]
Since [tex]\( f(-x) \ne f(x) \)[/tex], [tex]\( f(x) = -g(x) \)[/tex] is not an even function.

### Conclusion

The function that must be an even function is [tex]\( f(x) = g(x)^2 \)[/tex]. Therefore, the correct option is:

[tex]\[ \boxed{3} \][/tex]