Select the angle that correctly completes the law of cosines for this triangle.

[tex]\(12^2 + 13^2 - 2(12)(13) \cos \_ = 5^2\)[/tex]

A. [tex]\(23^{\circ}\)[/tex]
B. [tex]\(90^{\circ}\)[/tex]
C. [tex]\(180^{\circ}\)[/tex]
D. [tex]\(67^{\circ}\)[/tex]



Answer :

To determine the angle that completes the law of cosines for the given triangle, we will use the law of cosines formula:

[tex]\[ c^2 = a^2 + b^2 - 2ab \cdot \cos(C) \][/tex]

Given:
- [tex]\( a = 12 \)[/tex]
- [tex]\( b = 13 \)[/tex]
- [tex]\( c = 5 \)[/tex]

Let's plug these values into the law of cosines formula to solve for [tex]\( \cos(C) \)[/tex]:

[tex]\[ 5^2 = 12^2 + 13^2 - 2 \cdot 12 \cdot 13 \cdot \cos(C) \][/tex]

Simplifying, we get:

[tex]\[ 25 = 144 + 169 - 312 \cdot \cos(C) \][/tex]

Combining the constants:

[tex]\[ 25 = 313 - 312 \cdot \cos(C) \][/tex]

Rearrange the equation to solve for [tex]\( \cos(C) \)[/tex]:

[tex]\[ 312 \cdot \cos(C) = 313 - 25 \][/tex]
[tex]\[ 312 \cdot \cos(C) = 288 \][/tex]

Next, isolate [tex]\( \cos(C) \)[/tex]:

[tex]\[ \cos(C) = \frac{288}{312} \][/tex]
[tex]\[ \cos(C) = \frac{24}{26} \][/tex]
[tex]\[ \cos(C) = \frac{12}{13} \][/tex]

Now, we need to find the angle [tex]\( C \)[/tex] such that [tex]\( \cos(C) = \frac{12}{13} \)[/tex]. Using the inverse cosine function ([tex]\( \cos^{-1} \)[/tex]), we find:

[tex]\[ C = \cos^{-1} \left(\frac{12}{13}\right) \][/tex]

The value of this angle, [tex]\( C \)[/tex], is calculated to be approximately [tex]\( 22.61986494804042^{\circ} \)[/tex].

Given the multiple-choice options:
A. [tex]\( 23^{\circ} \)[/tex]
B. [tex]\( 90^{\circ} \)[/tex]
C. [tex]\( 180^{\circ} \)[/tex]
D. [tex]\( 67^{\circ} \)[/tex]

The angle closest to our calculated value of [tex]\( 22.61986494804042^{\circ} \)[/tex] is:

A. [tex]\( 23^{\circ} \)[/tex]

Thus, the angle that correctly completes the law of cosines for this triangle is:

[tex]\[ \boxed{23^{\circ}} \][/tex]