Answered

Solve the inequality:

[tex]\(12x + 6 \geq 9x + 12\)[/tex]

A. [tex]\(x \geq 2\)[/tex]
B. [tex]\(x \geq 6\)[/tex]
C. [tex]\(x \leq 6\)[/tex]
D. [tex]\(x \leq 2\)[/tex]



Answer :

To solve the inequality [tex]\( 12x + 6 \geq 9x + 12 \)[/tex], follow these steps:

1. Simplify the inequality:

Start by subtracting [tex]\( 9x \)[/tex] from both sides of the inequality:
[tex]\[ 12x + 6 - 9x \geq 12 \][/tex]

This simplifies to:
[tex]\[ 3x + 6 \geq 12 \][/tex]

2. Isolate the variable:

Subtract 6 from both sides of the inequality to isolate the term with the variable [tex]\( x \)[/tex]:
[tex]\[ 3x + 6 - 6 \geq 12 - 6 \][/tex]

Simplifying this gives:
[tex]\[ 3x \geq 6 \][/tex]

3. Solve for [tex]\( x \)[/tex]:

Divide both sides by the coefficient of [tex]\( x \)[/tex], which is 3:
[tex]\[ \frac{3x}{3} \geq \frac{6}{3} \][/tex]

This simplifies to:
[tex]\[ x \geq 2 \][/tex]

Therefore, the solution to the inequality [tex]\( 12x + 6 \geq 9x + 12 \)[/tex] is:
[tex]\[ x \geq 2 \][/tex]

Considering the options provided:

A. [tex]\( x \geq 2 \)[/tex]
B. [tex]\( x \geq 6 \)[/tex]
C. [tex]\( x \leq 6 \)[/tex]
D. [tex]\( x \leq 2 \)[/tex]

The correct answer is:

A. [tex]\( x \geq 2 \)[/tex]