Answered

Solve [tex]\( 2x + 2 \ \textgreater \ 10 \)[/tex]:

A. [tex]\( x \ \textgreater \ 6 \)[/tex]

B. [tex]\( x \ \textless \ 6 \)[/tex]

C. [tex]\( x \ \textless \ 4 \)[/tex]

D. [tex]\( x \ \textgreater \ 4 \)[/tex]



Answer :

To solve the inequality [tex]\( 2x + 2 > 10 \)[/tex], follow these steps:

1. Subtract 2 from both sides of the inequality to isolate the term with [tex]\( x \)[/tex]:
[tex]\[ 2x + 2 - 2 > 10 - 2 \][/tex]
Simplifying this, we have:
[tex]\[ 2x > 8 \][/tex]

2. Divide both sides of the inequality by 2 to solve for [tex]\( x \)[/tex]:
[tex]\[ \frac{2x}{2} > \frac{8}{2} \][/tex]
Simplifying this, we get:
[tex]\[ x > 4 \][/tex]

Thus, the correct answer is [tex]\( \boxed{D} \, x > 4 \)[/tex].