You have a particle of length [tex]\(68 \, \text{nm}\)[/tex]. What is this in meters?

A. [tex]\(6.8 \times 10^{14} \, \text{m}\)[/tex]
B. [tex]\(6.8 \times 10^{-8} \, \text{m}\)[/tex]
C. [tex]\(6.8 \times 10^{10} \, \text{m}\)[/tex]
D. [tex]\(6.8 \times 10^{-11} \, \text{m}\)[/tex]



Answer :

Certainly! Let's convert the length of the particle from nanometers (nm) to meters (m).

1. Understanding the Conversion:
- We know that 1 nanometer (nm) is equal to [tex]\( 1 \times 10^{-9} \)[/tex] meters (m).

2. Given Length:
- The given length of the particle is 68 nm.

3. Setting up the Conversion:
- To convert from nanometers to meters, we use the conversion factor:
[tex]\[ \text{length in meters} = \text{length in nanometers} \times 1 \times 10^{-9} \][/tex]

4. Performing the Calculation:
- By substituting the given length into the conversion formula:
[tex]\[ \text{length in meters} = 68 \, \text{nm} \times 1 \times 10^{-9} \][/tex]
- Simplifying this, we get:
[tex]\[ \text{length in meters} = 68 \times 10^{-9} \, \text{m} \][/tex]

5. Expressing in Scientific Notation:
- We can express [tex]\( 68 \times 10^{-9} \)[/tex] in scientific notation as:
[tex]\[ 6.8 \times 10^{-8} \, \text{m} \][/tex]

6. Choosing the Correct Answer:
- Comparing our result with the given options:
A. [tex]\(6.8 \times 10^{14} \, \text{m}\)[/tex]
B. [tex]\(6.8 \times 10^{-8} \, \text{m}\)[/tex]
C. [tex]\(6.8 \times 10^{10} \, \text{m}\)[/tex]
D. [tex]\(6.8 \times 10^{-11} \, \text{m}\)[/tex]

- The correct answer is:
[tex]\[ \boxed{6.8 \times 10^{-8} \, \text{m}} \][/tex]

Hence, the length of the particle in meters is [tex]\( 6.8 \times 10^{-8} \, \text{m} \)[/tex].