The number of cases of a new disease can be modeled by the quadratic regression equation [tex]\( y = -2x^2 + 36x + 6 \)[/tex], where [tex]\( x \)[/tex] represents the year.

Which is the best prediction for the number of new cases in year 15?

A. 194
B. 96
C. 614
D. 328



Answer :

To determine the number of new cases in year 15 using the quadratic regression equation [tex]\( y = -2x^2 + 36x + 6 \)[/tex]:

1. Substitute [tex]\( x = 15 \)[/tex] into the equation:
[tex]\[ y = -2(15)^2 + 36(15) + 6 \][/tex]

2. Calculate [tex]\( 15^2 \)[/tex]:
[tex]\[ 15^2 = 225 \][/tex]

3. Multiply [tex]\( 225 \)[/tex] by [tex]\(-2\)[/tex]:
[tex]\[ -2 \times 225 = -450 \][/tex]

4. Multiply [tex]\( 15 \)[/tex] by [tex]\( 36 \)[/tex]:
[tex]\[ 36 \times 15 = 540 \][/tex]

5. Add these values to the constant term [tex]\( 6 \)[/tex]:
[tex]\[ y = -450 + 540 + 6 \][/tex]

6. Perform the additions:
[tex]\[ y = 90 + 6 \][/tex]

[tex]\[ y = 96 \][/tex]

Hence, the best prediction for the number of new cases in year 15 is [tex]\( \boxed{96} \)[/tex].