Which of the following is an even function?

A. [tex]\( g(x) = (x-1)^2 + 1 \)[/tex]

B. [tex]\( g(x) = 2x^2 + 1 \)[/tex]

C. [tex]\( g(x) = 4x + 2 \)[/tex]

D. [tex]\( g(x) = 2x \)[/tex]



Answer :

To determine if a function [tex]\( g(x) \)[/tex] is even, we need to check whether it satisfies the condition [tex]\( g(x) = g(-x) \)[/tex] for all [tex]\( x \)[/tex] in the domain of the function. Let's analyze each given function step by step:

1. [tex]\( g(x) = (x-1)^2 + 1 \)[/tex]

Let's substitute [tex]\( -x \)[/tex] for [tex]\( x \)[/tex]:

[tex]\[ g(-x) = (-x - 1)^2 + 1 \][/tex]

Simplifying inside the parentheses:

[tex]\[ g(-x) = (-(x + 1))^2 + 1 = (x + 1)^2 + 1 \][/tex]

Therefore:

[tex]\[ (x+1)^2 = x^2 + 2x + 1 \][/tex]

Substituting back:

[tex]\[ g(-x) = x^2 + 2x + 1 + 1 = x^2 + 2x + 2 \neq x^2 - 2x + 2 \][/tex]

Since [tex]\( g(x) \neq g(-x) \)[/tex], this function is not even.

2. [tex]\( g(x) = 2x^2 + 1 \)[/tex]

Let's substitute [tex]\( -x \)[/tex] for [tex]\( x \)[/tex]:

[tex]\[ g(-x) = 2(-x)^2 + 1 \][/tex]

Simplifying:

[tex]\[ g(-x) = 2x^2 + 1 \][/tex]

Since [tex]\( g(x) \)[/tex] also equals [tex]\( 2x^2 + 1 \)[/tex], we get:

[tex]\[ g(-x) = g(x) \][/tex]

Therefore, this function is even.

3. [tex]\( g(x) = 4x + 2 \)[/tex]

Let's substitute [tex]\( -x \)[/tex] for [tex]\( x \)[/tex]:

[tex]\[ g(-x) = 4(-x) + 2 \][/tex]

Simplifying:

[tex]\[ g(-x) = -4x + 2 \][/tex]

Since [tex]\( g(x) = 4x + 2 \)[/tex], we see:

[tex]\[ g(-x) \neq g(x) \][/tex]

Therefore, this function is not even.

4. [tex]\( g(x) = 2x \)[/tex]

Let's substitute [tex]\( -x \)[/tex] for [tex]\( x \)[/tex]:

[tex]\[ g(-x) = 2(-x) \][/tex]

Simplifying:

[tex]\[ g(-x) = -2x \][/tex]

Since [tex]\( g(x) = 2x \)[/tex], we see:

[tex]\[ g(-x) \neq g(x) \][/tex]

Therefore, this function is not even.

Conclusively, among the provided functions, [tex]\( g(x) = 2x^2 + 1 \)[/tex] is the only even function.