Solve [tex]\( I = P \cdot r \cdot t \)[/tex] for [tex]\( P \)[/tex] when [tex]\( I = 5480 \)[/tex], [tex]\( r = 0.04 \)[/tex], and [tex]\( t = 7 \)[/tex].

Round your answer to two decimal places.



Answer :

To solve the equation [tex]\( I = P r t \)[/tex] for [tex]\( P \)[/tex], we need to isolate [tex]\( P \)[/tex] on one side of the equation. Given:

[tex]\[ I = 5480 \][/tex]
[tex]\[ r = 0.04 \][/tex]
[tex]\[ t = 7 \][/tex]

The equation becomes:

[tex]\[ 5480 = P \cdot 0.04 \cdot 7 \][/tex]

To solve for [tex]\( P \)[/tex], we divide both sides of the equation by [tex]\( 0.04 \cdot 7 \)[/tex]:

[tex]\[ P = \frac{5480}{0.04 \cdot 7} \][/tex]

First, we calculate the denominator:

[tex]\[ 0.04 \cdot 7 = 0.28 \][/tex]

Now, substitute that back into the equation:

[tex]\[ P = \frac{5480}{0.28} \][/tex]

Next, perform the division:

[tex]\[ P \approx 19571.42857142857 \][/tex]

To round the answer to two decimal places:

[tex]\[ P \approx 19571.43 \][/tex]

So, the value of [tex]\( P \)[/tex], rounded to two decimal places, is [tex]\( 19571.43 \)[/tex].