Answer :
To solve the equation [tex]\( I = P r t \)[/tex] for [tex]\( P \)[/tex], we need to isolate [tex]\( P \)[/tex] on one side of the equation. Given:
[tex]\[ I = 5480 \][/tex]
[tex]\[ r = 0.04 \][/tex]
[tex]\[ t = 7 \][/tex]
The equation becomes:
[tex]\[ 5480 = P \cdot 0.04 \cdot 7 \][/tex]
To solve for [tex]\( P \)[/tex], we divide both sides of the equation by [tex]\( 0.04 \cdot 7 \)[/tex]:
[tex]\[ P = \frac{5480}{0.04 \cdot 7} \][/tex]
First, we calculate the denominator:
[tex]\[ 0.04 \cdot 7 = 0.28 \][/tex]
Now, substitute that back into the equation:
[tex]\[ P = \frac{5480}{0.28} \][/tex]
Next, perform the division:
[tex]\[ P \approx 19571.42857142857 \][/tex]
To round the answer to two decimal places:
[tex]\[ P \approx 19571.43 \][/tex]
So, the value of [tex]\( P \)[/tex], rounded to two decimal places, is [tex]\( 19571.43 \)[/tex].
[tex]\[ I = 5480 \][/tex]
[tex]\[ r = 0.04 \][/tex]
[tex]\[ t = 7 \][/tex]
The equation becomes:
[tex]\[ 5480 = P \cdot 0.04 \cdot 7 \][/tex]
To solve for [tex]\( P \)[/tex], we divide both sides of the equation by [tex]\( 0.04 \cdot 7 \)[/tex]:
[tex]\[ P = \frac{5480}{0.04 \cdot 7} \][/tex]
First, we calculate the denominator:
[tex]\[ 0.04 \cdot 7 = 0.28 \][/tex]
Now, substitute that back into the equation:
[tex]\[ P = \frac{5480}{0.28} \][/tex]
Next, perform the division:
[tex]\[ P \approx 19571.42857142857 \][/tex]
To round the answer to two decimal places:
[tex]\[ P \approx 19571.43 \][/tex]
So, the value of [tex]\( P \)[/tex], rounded to two decimal places, is [tex]\( 19571.43 \)[/tex].