Answer :
Sure, let's break this down step by step.
### Part (a)
We need to find the value of [tex]\(2x + y\)[/tex] when [tex]\(x = 4\)[/tex] and [tex]\(y = 3\)[/tex].
1. Substitute the values into the expression:
[tex]\[ 2x + y \quad \text{where} \quad x = 4 \quad \text{and} \quad y = 3 \][/tex]
2. Calculate:
[tex]\[ 2(4) + 3 = 8 + 3 = 11 \][/tex]
So, the value of [tex]\(2x + y\)[/tex] when [tex]\(x = 4\)[/tex] and [tex]\(y = 3\)[/tex] is [tex]\(\boxed{11}\)[/tex].
### Part (b)
We need to find the value of [tex]\(a^2 + b\)[/tex] when [tex]\(a = -2\)[/tex] and [tex]\(b = 5\)[/tex].
1. Substitute the values into the expression:
[tex]\[ a^2 + b \quad \text{where} \quad a = -2 \quad \text{and} \quad b = 5 \][/tex]
2. Calculate:
[tex]\[ (-2)^2 + 5 = 4 + 5 = 9 \][/tex]
So, the value of [tex]\(a^2 + b\)[/tex] when [tex]\(a = -2\)[/tex] and [tex]\(b = 5\)[/tex] is [tex]\(\boxed{9}\)[/tex].
### Summary
- The value of [tex]\(2x + y\)[/tex] for [tex]\(x = 4\)[/tex] and [tex]\(y = 3\)[/tex] is [tex]\(\boxed{11}\)[/tex].
- The value of [tex]\(a^2 + b\)[/tex] for [tex]\(a = -2\)[/tex] and [tex]\(b = 5\)[/tex] is [tex]\(\boxed{9}\)[/tex].
### Part (a)
We need to find the value of [tex]\(2x + y\)[/tex] when [tex]\(x = 4\)[/tex] and [tex]\(y = 3\)[/tex].
1. Substitute the values into the expression:
[tex]\[ 2x + y \quad \text{where} \quad x = 4 \quad \text{and} \quad y = 3 \][/tex]
2. Calculate:
[tex]\[ 2(4) + 3 = 8 + 3 = 11 \][/tex]
So, the value of [tex]\(2x + y\)[/tex] when [tex]\(x = 4\)[/tex] and [tex]\(y = 3\)[/tex] is [tex]\(\boxed{11}\)[/tex].
### Part (b)
We need to find the value of [tex]\(a^2 + b\)[/tex] when [tex]\(a = -2\)[/tex] and [tex]\(b = 5\)[/tex].
1. Substitute the values into the expression:
[tex]\[ a^2 + b \quad \text{where} \quad a = -2 \quad \text{and} \quad b = 5 \][/tex]
2. Calculate:
[tex]\[ (-2)^2 + 5 = 4 + 5 = 9 \][/tex]
So, the value of [tex]\(a^2 + b\)[/tex] when [tex]\(a = -2\)[/tex] and [tex]\(b = 5\)[/tex] is [tex]\(\boxed{9}\)[/tex].
### Summary
- The value of [tex]\(2x + y\)[/tex] for [tex]\(x = 4\)[/tex] and [tex]\(y = 3\)[/tex] is [tex]\(\boxed{11}\)[/tex].
- The value of [tex]\(a^2 + b\)[/tex] for [tex]\(a = -2\)[/tex] and [tex]\(b = 5\)[/tex] is [tex]\(\boxed{9}\)[/tex].