Answer :
To determine the converse of the implication [tex]\( p \rightarrow q \)[/tex], we first need to understand what the converse of an implication is.
Given:
- [tex]\( p \)[/tex]: [tex]\(2x = 16\)[/tex]
- [tex]\( q \)[/tex]: [tex]\(3x - 4 = 20\)[/tex]
When we have an implication [tex]\( p \rightarrow q \)[/tex], it reads "If [tex]\( p \)[/tex], then [tex]\( q \)[/tex]." The converse of this implication is obtained by reversing the direction of the implication, i.e., "If [tex]\( q \)[/tex], then [tex]\( p \)[/tex]."
So, given the original implication:
- [tex]\( p \rightarrow q \)[/tex]: "If [tex]\(2x = 16\)[/tex], then [tex]\(3x - 4 = 20\)[/tex]"
The converse of this implication will be:
- [tex]\( q \rightarrow p \)[/tex]: "If [tex]\(3x - 4 = 20\)[/tex], then [tex]\(2x = 16\)[/tex]"
Thus, the correct answer is:
"If [tex]\( 3x - 4 = 20 \)[/tex], then [tex]\( 2x = 16 \)[/tex]."
Given:
- [tex]\( p \)[/tex]: [tex]\(2x = 16\)[/tex]
- [tex]\( q \)[/tex]: [tex]\(3x - 4 = 20\)[/tex]
When we have an implication [tex]\( p \rightarrow q \)[/tex], it reads "If [tex]\( p \)[/tex], then [tex]\( q \)[/tex]." The converse of this implication is obtained by reversing the direction of the implication, i.e., "If [tex]\( q \)[/tex], then [tex]\( p \)[/tex]."
So, given the original implication:
- [tex]\( p \rightarrow q \)[/tex]: "If [tex]\(2x = 16\)[/tex], then [tex]\(3x - 4 = 20\)[/tex]"
The converse of this implication will be:
- [tex]\( q \rightarrow p \)[/tex]: "If [tex]\(3x - 4 = 20\)[/tex], then [tex]\(2x = 16\)[/tex]"
Thus, the correct answer is:
"If [tex]\( 3x - 4 = 20 \)[/tex], then [tex]\( 2x = 16 \)[/tex]."