Estimate the limit.

[tex]\[
\lim _{x \rightarrow 3} \frac{x-3}{x^2-2x-3}
\][/tex]

A. [tex]\(\lim _{x \rightarrow 3} f(x) = 0.2\)[/tex]

B. [tex]\(\lim _{x \rightarrow 3} f(x) = 0.24\)[/tex]

C. [tex]\(\lim _{x \rightarrow 3} f(x) = 0.25\)[/tex]

D. [tex]\(\lim _{x \rightarrow 3} f(x) = 0.21\)[/tex]

Please select the best answer from the choices provided.



Answer :

To estimate the limit [tex]\(\lim_{{x \to 3}} \frac{x-3}{x^2 - 2x - 3}\)[/tex], let's go through a detailed step-by-step solution.

1. Identify the expression in the limit:
[tex]\[ \lim_{{x \to 3}} \frac{x-3}{x^2 - 2x - 3} \][/tex]

2. Factor the denominator:
The quadratic expression [tex]\(x^2 - 2x - 3\)[/tex] can be factored. We find two numbers that multiply to [tex]\(-3\)[/tex] and add to [tex]\(-2\)[/tex]: these numbers are [tex]\(1\)[/tex] and [tex]\(-3\)[/tex].
[tex]\[ x^2 - 2x - 3 = (x - 3)(x + 1) \][/tex]

3. Rewrite the original limit with the factored form:
[tex]\[ \lim_{{x \to 3}} \frac{x-3}{(x - 3)(x + 1)} \][/tex]

4. Simplify the expression:
Cancel out the common factor [tex]\((x - 3)\)[/tex] from the numerator and denominator, provided [tex]\(x \neq 3\)[/tex]:
[tex]\[ \frac{x-3}{(x - 3)(x + 1)} = \frac{1}{x + 1} \][/tex]

5. Consider the simplified expression:
Now, the limit becomes:
[tex]\[ \lim_{{x \to 3}} \frac{1}{x + 1} \][/tex]

6. Substitute [tex]\(x = 3\)[/tex] in the simplified expression:
[tex]\[ \frac{1}{3 + 1} = \frac{1}{4} \][/tex]

Therefore, the limit is:
[tex]\[ \lim_{{x \to 3}} \frac{x-3}{x^2 - 2x - 3} = \frac{1}{4} = 0.25 \][/tex]

Given the options:
a. [tex]\(\lim_{{x \to 3}} f(x) = 0.2\)[/tex]
b. [tex]\(\lim_{{x \to 3}} f(x) = 0.24\)[/tex]
c. [tex]\(\lim_{{x \to 3}} f(x) = 0.25\)[/tex]
d. [tex]\(\lim_{{x \to 3}} f(x) = 0.21\)[/tex]

The correct answer is:
c. [tex]\(\lim_{{x \to 3}} f(x) = 0.25\)[/tex]