Express the following in terms of [tex]\(i\)[/tex]:
[tex]\[ \sqrt{-50} \][/tex]

Provide your answer below:
[tex]\[\square\][/tex]



Answer :

To express [tex]\(\sqrt{-50}\)[/tex] in terms of [tex]\(i\)[/tex], let's go through the steps one by one.

1. Identify the negative number under the square root:
[tex]\[ \sqrt{-50} \][/tex]

2. Recognize that the square root of a negative number can be expressed in terms of the imaginary unit [tex]\(i\)[/tex]:
By definition, [tex]\(i\)[/tex] is the imaginary unit where [tex]\(i^2 = -1\)[/tex]. Hence, [tex]\(\sqrt{-1} = i\)[/tex].

3. Separate the square root of the negative number:
We can break this down into the product of two square roots:
[tex]\[ \sqrt{-50} = \sqrt{-1 \times 50} = \sqrt{-1} \times \sqrt{50} \][/tex]

4. Simplify using the imaginary unit [tex]\(i\)[/tex]:
Substitute [tex]\(\sqrt{-1}\)[/tex] with [tex]\(i\)[/tex]:
[tex]\[ \sqrt{-50} = i \times \sqrt{50} \][/tex]

5. Calculate the square root of the positive number:
[tex]\[ \sqrt{50} = \sqrt{25 \times 2} = \sqrt{25} \times \sqrt{2} = 5\sqrt{2} \][/tex]

6. Combine the results:
[tex]\[ \sqrt{-50} = i \times 5\sqrt{2} = 5\sqrt{2}i \][/tex]

7. Evaluate the numerical value:
We know that [tex]\(\sqrt{50} \approx 7.0710678118654755\)[/tex]. Hence:
[tex]\[ \sqrt{-50} = 7.0710678118654755i \][/tex]

8. Final simplified answer:
[tex]\[ \boxed{7.0710678118654755i} \][/tex]

So, the expression [tex]\(\sqrt{-50}\)[/tex] in terms of [tex]\(i\)[/tex] is [tex]\(7.0710678118654755i\)[/tex].