This table shows values that represent an exponential function.

[tex]\[
\begin{array}{|c|c|}
\hline
x & y \\
\hline
0 & 1 \\
\hline
1 & 2 \\
\hline
2 & 4 \\
\hline
3 & 8 \\
\hline
4 & 16 \\
\hline
5 & 32 \\
\hline
6 & 64 \\
\hline
\end{array}
\][/tex]

What is the average rate of change for this function for the interval from [tex]\( x = 2 \)[/tex] to [tex]\( x = 4 \)[/tex]?



Answer :

To determine the average rate of change for the given exponential function on the interval from [tex]\( x = 2 \)[/tex] to [tex]\( x = 4 \)[/tex], we follow these steps:

1. Identify the values of the function at [tex]\( x = 2 \)[/tex] and [tex]\( x = 4 \)[/tex]:
From the table, we have:
- When [tex]\( x = 2 \)[/tex], [tex]\( y = 4 \)[/tex]
- When [tex]\( x = 4 \)[/tex], [tex]\( y = 16 \)[/tex]

2. Calculate the change in [tex]\( y \)[/tex] (Δy):
[tex]\[ Δy = y_{4} - y_{2} = 16 - 4 = 12 \][/tex]

3. Calculate the change in [tex]\( x \)[/tex] (Δx):
[tex]\[ Δx = x_{4} - x_{2} = 4 - 2 = 2 \][/tex]

4. Compute the average rate of change:
[tex]\[ \text{Average Rate of Change} = \frac{Δy}{Δx} = \frac{12}{2} = 6 \][/tex]

Therefore, the average rate of change for the function on the interval from [tex]\( x = 2 \)[/tex] to [tex]\( x = 4 \)[/tex] is [tex]\(\boxed{6}\)[/tex].