Answer :

To rewrite each given fraction with a denominator of 24, follow these steps:

### Step 1: Convert [tex]\(\frac{3}{8}\)[/tex]

1. Identify the original numerator and denominator. For [tex]\(\frac{3}{8}\)[/tex], the numerator is 3 and the denominator is 8.
2. Determine how to scale the denominator from 8 to 24. We do this by finding a factor that multiplies 8 to get 24.
[tex]\[ 24 \div 8 = 3 \][/tex]
3. Multiply both the numerator and the denominator by this factor (3):
[tex]\[ \frac{3 \times 3}{8 \times 3} = \frac{9}{24} \][/tex]

So, [tex]\(\frac{3}{8}\)[/tex] is equivalent to [tex]\(\frac{9}{24}\)[/tex].

### Step 2: Convert [tex]\(\frac{7}{6}\)[/tex]

1. Identify the original numerator and denominator. For [tex]\(\frac{7}{6}\)[/tex], the numerator is 7 and the denominator is 6.
2. Determine how to scale the denominator from 6 to 24. We do this by finding a factor that multiplies 6 to get 24.
[tex]\[ 24 \div 6 = 4 \][/tex]
3. Multiply both the numerator and the denominator by this factor (4):
[tex]\[ \frac{7 \times 4}{6 \times 4} = \frac{28}{24} \][/tex]

So, [tex]\(\frac{7}{6}\)[/tex] is equivalent to [tex]\(\frac{28}{24}\)[/tex].

### Final Result

- [tex]\(\frac{3}{8} = \frac{9}{24}\)[/tex]
- [tex]\(\frac{7}{6} = \frac{28}{24}\)[/tex]

Thus, the fractions rewritten with a denominator of 24 are:
[tex]\[ \begin{array}{l} \frac{3}{8} = \frac{9}{24} \\ \frac{7}{6} = \frac{28}{24} \\ \end{array} \][/tex]