To rewrite each given fraction with a denominator of 24, follow these steps:
### Step 1: Convert [tex]\(\frac{3}{8}\)[/tex]
1. Identify the original numerator and denominator. For [tex]\(\frac{3}{8}\)[/tex], the numerator is 3 and the denominator is 8.
2. Determine how to scale the denominator from 8 to 24. We do this by finding a factor that multiplies 8 to get 24.
[tex]\[
24 \div 8 = 3
\][/tex]
3. Multiply both the numerator and the denominator by this factor (3):
[tex]\[
\frac{3 \times 3}{8 \times 3} = \frac{9}{24}
\][/tex]
So, [tex]\(\frac{3}{8}\)[/tex] is equivalent to [tex]\(\frac{9}{24}\)[/tex].
### Step 2: Convert [tex]\(\frac{7}{6}\)[/tex]
1. Identify the original numerator and denominator. For [tex]\(\frac{7}{6}\)[/tex], the numerator is 7 and the denominator is 6.
2. Determine how to scale the denominator from 6 to 24. We do this by finding a factor that multiplies 6 to get 24.
[tex]\[
24 \div 6 = 4
\][/tex]
3. Multiply both the numerator and the denominator by this factor (4):
[tex]\[
\frac{7 \times 4}{6 \times 4} = \frac{28}{24}
\][/tex]
So, [tex]\(\frac{7}{6}\)[/tex] is equivalent to [tex]\(\frac{28}{24}\)[/tex].
### Final Result
- [tex]\(\frac{3}{8} = \frac{9}{24}\)[/tex]
- [tex]\(\frac{7}{6} = \frac{28}{24}\)[/tex]
Thus, the fractions rewritten with a denominator of 24 are:
[tex]\[
\begin{array}{l}
\frac{3}{8} = \frac{9}{24} \\
\frac{7}{6} = \frac{28}{24} \\
\end{array}
\][/tex]