Express the product in simplest form.

[tex]\[
\frac{8}{2x+8} \cdot \frac{x^2-16}{4}
\][/tex]

A. [tex]\( (x+4) \)[/tex]

B. [tex]\( 2(x-4) \)[/tex]

C. [tex]\( (x-4) \)[/tex]

D. [tex]\( (x+4)(x-4) \)[/tex]



Answer :

Let's simplify the given expression step by step:

The given expression to simplify is:
[tex]\[ \frac{8}{2x + 8} \cdot \frac{x^2 - 16}{4} \][/tex]

### Step 1: Factorize the fractions

1. Factorize the denominator of the first fraction:
[tex]\[ 2x + 8 = 2(x + 4) \][/tex]
So, the first fraction becomes:
[tex]\[ \frac{8}{2(x + 4)} \][/tex]

2. Notice the numerator of the second fraction is a difference of squares:
[tex]\[ x^2 - 16 = (x - 4)(x + 4) \][/tex]
So, the second fraction becomes:
[tex]\[ \frac{(x - 4)(x + 4)}{4} \][/tex]

### Step 2: Write the product of the fractions

Now we write the product of the fractions:
[tex]\[ \left( \frac{8}{2(x + 4)} \right) \cdot \left( \frac{(x - 4)(x + 4)}{4} \right) \][/tex]

### Step 3: Multiply the numerators and the denominators

1. Multiply the numerators:
[tex]\[ 8 \cdot (x - 4)(x + 4) \][/tex]

2. Multiply the denominators:
[tex]\[ 2(x + 4) \cdot 4 = 8(x + 4) \][/tex]

So, the expression now becomes:
[tex]\[ \frac{8 \cdot (x - 4)(x + 4)}{8(x + 4)} \][/tex]

### Step 4: Simplify the expression

Notice that the factor [tex]\(8\)[/tex] and [tex]\((x + 4)\)[/tex] in the numerator and the denominator can be cancelled out:
[tex]\[ \frac{8 \cdot (x - 4)(x + 4)}{8(x + 4)} = \frac{(x - 4)(x + 4)}{x + 4} \][/tex]
[tex]\[ = x - 4 \][/tex]

### Step 5: Choose the correct answer

The simplified form of the given expression is:
[tex]\[ x - 4 \][/tex]

So, the correct answer is:
[tex]\[ \boxed{\text{C. } (x-4)} \][/tex]