The molar mass of barium nitrate [tex]\(\text{Ba(NO}_3\text{)}_2\)[/tex] is [tex]\(261.35 \text{ g/mol}\)[/tex].

What is the mass of [tex]\(5.30 \times 10^{22}\)[/tex] formula units of [tex]\(\text{Ba(NO}_3\text{)}_2\)[/tex]?

A. [tex]\(0.0900 \text{ g}\)[/tex]
B. [tex]\(12.0 \text{ g}\)[/tex]
C. [tex]\(23.0 \text{ g}\)[/tex]
D. [tex]\(3,130 \text{ g}\)[/tex]



Answer :

To determine the mass of [tex]\( 5.30 \times 10^{22} \)[/tex] formula units of barium nitrate [tex]\((Ba(NO_3)_2)\)[/tex], we can follow these steps:

1. Understand what is given:
- Molar mass of barium nitrate [tex]\((Ba(NO_3)_2)\)[/tex] is [tex]\( 261.35 \, \text{g/mol} \)[/tex].
- Number of formula units, [tex]\( 5.30 \times 10^{22} \)[/tex].

2. Use Avogadro's number:
- Avogadro's number [tex]\( 6.022 \times 10^{23} \, \text{units/mol} \)[/tex] tells us how many formula units are in one mole.

3. Calculate the number of moles:
To find the number of moles corresponding to [tex]\( 5.30 \times 10^{22} \)[/tex] formula units, divide the number of formula units by Avogadro's number:
[tex]\[ \text{Number of moles} = \frac{5.30 \times 10^{22}}{6.022 \times 10^{23}} \][/tex]
Through calculation, we find:
[tex]\[ \text{Number of moles} \approx 0.0880 \, \text{moles} \][/tex]

4. Calculate the mass:
Multiply the number of moles by the molar mass to get the mass:
[tex]\[ \text{Mass} = \text{Number of moles} \times \text{Molar mass} \][/tex]
Substituting the values:
[tex]\[ \text{Mass} = 0.0880 \, \text{moles} \times 261.35 \, \text{g/mol} \][/tex]
This gives:
[tex]\[ \text{Mass} \approx 23.0 \, \text{grams} \][/tex]

Thus, the mass of [tex]\( 5.30 \times 10^{22} \)[/tex] formula units of [tex]\( Ba(NO_3)_2 \)[/tex] is approximately [tex]\(23.0 \, \text{g}\)[/tex]. Therefore, the correct choice is:

[tex]\[ 23.0 \, \text{g} \][/tex]