The coordinates of a triangle [tex]\(PQR\)[/tex] are [tex]\(P(1,2)\)[/tex], [tex]\(Q(3,3)\)[/tex], and [tex]\(R(2,4)\)[/tex].

If triangle [tex]\(PQR\)[/tex] is translated 2 units to the right and 1 unit down and then reflected across the [tex]\(x\)[/tex]-axis to obtain triangle [tex]\(XYZ\)[/tex], what are the coordinates of the vertices of triangle [tex]\(XYZ\)[/tex]?

A. [tex]\(X(1,3), Y(2,5), Z(3,4)\)[/tex]
B. [tex]\(X(3,1), Y(5,2), Z(4,3)\)[/tex]
C. [tex]\(X(3,-1), Y(5,-2), Z(4,-3)\)[/tex]
D. [tex]\(X(-3,1), Y(-5,2), Z(-4,3)\)[/tex]
E. [tex]\(X(-1,-3), Y(-2,-5), Z(-3,-4)\)[/tex]



Answer :

To solve the problem, let's follow the geometric transformations step by step. We're given the coordinates of triangle [tex]\( PQR \)[/tex], which are [tex]\( P(1,2) \)[/tex], [tex]\( Q(3,3) \)[/tex], and [tex]\( R(2,4) \)[/tex]. We'll apply the translation and reflection to these points to find the coordinates of triangle [tex]\( XYZ \)[/tex].

1. Translation: Translate 2 units to the right and 1 unit down

* For point [tex]\( P(1, 2) \)[/tex]:
[tex]\[ P' = \left( 1 + 2, 2 - 1 \right) = (3, 1) \][/tex]

* For point [tex]\( Q(3, 3) \)[/tex]:
[tex]\[ Q' = \left( 3 + 2, 3 - 1 \right) = (5, 2) \][/tex]

* For point [tex]\( R(2, 4) \)[/tex]:
[tex]\[ R' = \left( 2 + 2, 4 - 1 \right) = (4, 3) \][/tex]

After translation, the new coordinates are [tex]\( P'(3,1) \)[/tex], [tex]\( Q'(5,2) \)[/tex], and [tex]\( R'(4,3) \)[/tex].

2. Reflection: Reflect across the [tex]\( x \)[/tex]-axis (change the sign of the [tex]\( y \)[/tex]-coordinate)

* For point [tex]\( P'(3, 1) \)[/tex]:
[tex]\[ X = (3, -1) \][/tex]

* For point [tex]\( Q'(5, 2) \)[/tex]:
[tex]\[ Y = (5, -2) \][/tex]

* For point [tex]\( R'(4, 3) \)[/tex]:
[tex]\[ Z = (4, -3) \][/tex]

After reflection across the [tex]\( x \)[/tex]-axis, the final coordinates are [tex]\( X(3, -1) \)[/tex], [tex]\( Y(5, -2) \)[/tex], and [tex]\( Z(4, -3) \)[/tex].

Thus, the coordinates of the vertices of triangle [tex]\( XYZ \)[/tex] are:
[tex]\[ \boxed{X(3, -1), Y(5, -2), and Z(4, -3)} \][/tex]

This matches option C.