Determine the intercepts of the line.

[tex]\( y = 6x + 13 \)[/tex]

[tex]\( x \)[/tex]-intercept: [tex]\(\quad \)[/tex]

[tex]\( y \)[/tex]-intercept: [tex]\((\quad , \quad)\)[/tex]



Answer :

To determine the intercepts of the line given by the equation [tex]\( y = 6x + 13 \)[/tex], we need to find both the [tex]\( x \)[/tex]-intercept and the [tex]\( y \)[/tex]-intercept.

### Finding the Y-Intercept:
The [tex]\( y \)[/tex]-intercept is the point where the line crosses the [tex]\( y \)[/tex]-axis. This occurs where [tex]\( x \)[/tex] is zero.

1. Substitute [tex]\( x = 0 \)[/tex] into the equation.
[tex]\[ y = 6(0) + 13 \][/tex]
2. Simplify the equation.
[tex]\[ y = 13 \][/tex]
Therefore, the [tex]\( y \)[/tex]-intercept is the point:
[tex]\[ (0, 13) \][/tex]

### Finding the X-Intercept:
The [tex]\( x \)[/tex]-intercept is the point where the line crosses the [tex]\( x \)[/tex]-axis. This occurs where [tex]\( y \)[/tex] is zero.

1. Set [tex]\( y = 0 \)[/tex] in the equation:
[tex]\[ 0 = 6x + 13 \][/tex]
2. Solve for [tex]\( x \)[/tex]:
[tex]\[ 0 = 6x + 13 \implies 6x = -13 \implies x = \frac{-13}{6} \][/tex]
Therefore, the [tex]\( x \)[/tex]-intercept is the point:
[tex]\[ \left(-\frac{13}{6}, 0\right) \][/tex]

### Summary
- The [tex]\( x \)[/tex]-intercept is [tex]\(\left(-\frac{13}{6}, 0\right)\)[/tex].
- The [tex]\( y \)[/tex]-intercept is [tex]\((0, 13)\)[/tex].