Which equation can be solved using the expression [tex]\(\frac{-3 \pm \sqrt{(3)^2+4(10)(2)}}{2(10)}\)[/tex] for [tex]\(x\)[/tex]?

A. [tex]\(10x^2 = 3x + 2\)[/tex]
B. [tex]\(2 = 3x + 10x^2\)[/tex]
C. [tex]\(3x = 10x^2 - 2\)[/tex]
D. [tex]\(10x^2 + 2 = -3x\)[/tex]



Answer :

To determine which equation can be solved using the given expression [tex]\(\frac{-3 \pm \sqrt{(3)^2+4(10)(2)}}{2(10)}\)[/tex], we will start by recognizing that this expression is derived from the quadratic formula applied to a quadratic equation in the form:

[tex]\[ ax^2 + bx + c = 0 \][/tex]

Given the expression is [tex]\(\frac{-3 \pm \sqrt{(3)^2 + 4(10)(2)}}{2(10)}\)[/tex], we can identify the coefficients [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex]:

- [tex]\(a = 10\)[/tex]
- [tex]\(b = -3\)[/tex]
- [tex]\(c = 2\)[/tex]

Next, we substitute these coefficients into the standard form of a quadratic equation:

[tex]\[ 10x^2 - 3x + 2 = 0 \][/tex]

This is the equation that corresponds to the given quadratic formula. Now, let's rewrite this equation by isolating the terms in different ways to match the given options.

Starting with:

[tex]\[ 10x^2 - 3x + 2 = 0 \][/tex]

We reorganize and isolate the constant term on one side:

[tex]\[ 10x^2 - 3x = -2 \][/tex]
[tex]\[ 10x^2 - 2 = 3x \][/tex]

All the options presented are:

a) [tex]\( 10x^2 = 3x + 2 \)[/tex]
b) [tex]\( 2 = 3x + 10x^2 \)[/tex]
c) [tex]\( 3x = 10x^2 - 2 \)[/tex]
d) [tex]\( 10x^2 + 2 = -3x \)[/tex]

From our rearrangement, we notice that:

[tex]\[ 10x^2 - 2 = 3x \][/tex]

We can write this equivalently as:

[tex]\[ 10x^2 + 2 = -3x \][/tex]

Therefore, the correct equation that can be solved using the given expression is:

[tex]\[ 10x^2 + 2 = -3x \][/tex]

Thus, the answer is:

[tex]\[ \boxed{10x^2 + 2 = -3x} \][/tex]