[tex]$w$[/tex] and [tex]$x$[/tex] are whole numbers.

[tex]\[
\begin{array}{r}
w \ \textgreater \ 40 \\
x \ \textless \ 30
\end{array}
\][/tex]

Work out the smallest possible value of [tex]\( w - x \)[/tex].



Answer :

To solve the problem, we need to determine the smallest possible values for [tex]\( w \)[/tex] and [tex]\( x \)[/tex] that satisfy the given conditions:

1. [tex]\( w > 40 \)[/tex]
2. [tex]\( x < 30 \)[/tex]

### Step-by-Step Solution

1. Understanding the condition for [tex]\( w \)[/tex]:
- The inequality [tex]\( w > 40 \)[/tex] means that [tex]\( w \)[/tex] must be greater than 40.
- Since [tex]\( w \)[/tex] is a whole number, the smallest whole number greater than 40 is 41.

2. Understanding the condition for [tex]\( x \)[/tex]:
- The inequality [tex]\( x < 30 \)[/tex] indicates that [tex]\( x \)[/tex] must be less than 30.
- Since [tex]\( x \)[/tex] is a whole number, the smallest possible value that meets this condition is the smallest non-negative number, which is 0.

### Conclusion
Given these constraints:
- The smallest possible value for [tex]\( w \)[/tex] is [tex]\( 41 \)[/tex].
- The smallest possible value for [tex]\( x \)[/tex] is [tex]\( 0 \)[/tex].

Thus, the smallest possible values for [tex]\( w \)[/tex] and [tex]\( x \)[/tex] are [tex]\( w = 41 \)[/tex] and [tex]\( x = 0 \)[/tex].

Therefore, the answer is:
[tex]\[ (w, x) = (41, 0) \][/tex]