Which of these points lies on the line described by the equation below?

[tex]\( y - 5 = 6(x - 7) \)[/tex]

A. [tex]\((-7, -5)\)[/tex]

B. [tex]\((5, 7)\)[/tex]

C. [tex]\((-5, -7)\)[/tex]

D. [tex]\((7, 5)\)[/tex]



Answer :

To determine which of the points lies on the line described by the equation [tex]\(y - 5 = 6(x - 7)\)[/tex], we need to check each point by substituting the [tex]\(x\)[/tex] and [tex]\(y\)[/tex] coordinates into the equation and seeing if it holds true.

Point A: [tex]\((-7, -5)\)[/tex]

Substitute [tex]\(x = -7\)[/tex] and [tex]\(y = -5\)[/tex] into the equation:
[tex]\[ -5 - 5 = 6(-7 - 7) \][/tex]

Simplify both sides:
[tex]\[ -10 = 6(-14) \][/tex]
[tex]\[ -10 = -84 \quad \text{(This is false)} \][/tex]

So, point A does not lie on the line.

Point B: [tex]\((5, 7)\)[/tex]

Substitute [tex]\(x = 5\)[/tex] and [tex]\(y = 7\)[/tex] into the equation:
[tex]\[ 7 - 5 = 6(5 - 7) \][/tex]

Simplify both sides:
[tex]\[ 2 = 6(-2) \][/tex]
[tex]\[ 2 = -12 \quad \text{(This is false)} \][/tex]

So, point B does not lie on the line.

Point C: [tex]\((-5, -7)\)[/tex]

Substitute [tex]\(x = -5\)[/tex] and [tex]\(y = -7\)[/tex] into the equation:
[tex]\[ -7 - 5 = 6(-5 - 7) \][/tex]

Simplify both sides:
[tex]\[ -12 = 6(-12) \][/tex]
[tex]\[ -12 = -72 \quad \text{(This is false)} \][/tex]

So, point C does not lie on the line.

Point D: [tex]\((7, 5)\)[/tex]

Substitute [tex]\(x = 7\)[/tex] and [tex]\(y = 5\)[/tex] into the equation:
[tex]\[ 5 - 5 = 6(7 - 7) \][/tex]

Simplify both sides:
[tex]\[ 0 = 6(0) \][/tex]
[tex]\[ 0 = 0 \quad \text{(This is true)} \][/tex]

So, point D lies on the line.

In conclusion, the point that lies on the line described by the equation [tex]\(y - 5 = 6(x - 7)\)[/tex] is:

D. [tex]\((7, 5)\)[/tex]