Answer :
Primero, definamos el número complejo [tex]\( z \)[/tex] y su conjugado [tex]\( \bar{z} \)[/tex]:
[tex]\[ z = -\frac{1}{2} + 3i \][/tex]
[tex]\[ \bar{z} = -\frac{1}{2} - 3i \][/tex]
El conjugado de un número complejo [tex]\( a + bi \)[/tex] es [tex]\( a - bi \)[/tex].
Ahora, necesitamos calcular la expresión [tex]\((z, \bar{z}) - z\)[/tex]. Primero, desglosamos la expresión [tex]\((z, \bar{z})\)[/tex]:
[tex]\[ (z, \bar{z}) \][/tex]
es simplemente un par ordenado que contiene [tex]\( z \)[/tex] y su conjugado [tex]\( \bar{z} \)[/tex].
Después, se restará [tex]\( z \)[/tex] de este par ordenado. Para realizar esta operación, debemos interpretar cómo manejar esta resta. Generalmente, una expresión del tipo [tex]\((a, b) - c\)[/tex] implicaría restar [tex]\( c \)[/tex] de ambos términos del par ordenado [tex]\((a, b)\)[/tex].
Descomposemos este proceso paso a paso para nuestro caso específico:
1. Escribimos el par ordenado:
[tex]\[ (z, \bar{z}) = \left( -\frac{1}{2} + 3i, -\frac{1}{2} - 3i \right) \][/tex]
2. Restamos [tex]\( z \)[/tex] de cada componente del par ordenado. Reiteramos que [tex]\( z = -\frac{1}{2} + 3i \)[/tex]:
[tex]\[ \begin{align*} \left( z, \bar{z} \right) - z & = \left( z - z, \bar{z} - z \right) \\ & = \left( \left( -\frac{1}{2} + 3i \right) - \left( -\frac{1}{2} + 3i \right), \left( -\frac{1}{2} - 3i \right) - \left( -\frac{1}{2} + 3i \right) \right) \\ & = \left( 0, \left( -\frac{1}{2} - 3i \right) - \left( -\frac{1}{2} + 3i \right) \right) \end{align*} \][/tex]
3. Simplificamos la resta en el segundo componente del par ordenado:
[tex]\[ \left( -\frac{1}{2} - 3i \right) - \left( -\frac{1}{2} + 3i \right) = -\frac{1}{2} - 3i + \frac{1}{2} - 3i = -6i \][/tex]
Por lo tanto, la expresión final es:
[tex]\[ \left( (z, \bar{z}) - z \right) = \left( 0, -6i \right) \][/tex]
Así obtenemos la solución:
[tex]\[ (z, \bar{z}) - z = (0, -6i) \][/tex]
[tex]\[ z = -\frac{1}{2} + 3i \][/tex]
[tex]\[ \bar{z} = -\frac{1}{2} - 3i \][/tex]
El conjugado de un número complejo [tex]\( a + bi \)[/tex] es [tex]\( a - bi \)[/tex].
Ahora, necesitamos calcular la expresión [tex]\((z, \bar{z}) - z\)[/tex]. Primero, desglosamos la expresión [tex]\((z, \bar{z})\)[/tex]:
[tex]\[ (z, \bar{z}) \][/tex]
es simplemente un par ordenado que contiene [tex]\( z \)[/tex] y su conjugado [tex]\( \bar{z} \)[/tex].
Después, se restará [tex]\( z \)[/tex] de este par ordenado. Para realizar esta operación, debemos interpretar cómo manejar esta resta. Generalmente, una expresión del tipo [tex]\((a, b) - c\)[/tex] implicaría restar [tex]\( c \)[/tex] de ambos términos del par ordenado [tex]\((a, b)\)[/tex].
Descomposemos este proceso paso a paso para nuestro caso específico:
1. Escribimos el par ordenado:
[tex]\[ (z, \bar{z}) = \left( -\frac{1}{2} + 3i, -\frac{1}{2} - 3i \right) \][/tex]
2. Restamos [tex]\( z \)[/tex] de cada componente del par ordenado. Reiteramos que [tex]\( z = -\frac{1}{2} + 3i \)[/tex]:
[tex]\[ \begin{align*} \left( z, \bar{z} \right) - z & = \left( z - z, \bar{z} - z \right) \\ & = \left( \left( -\frac{1}{2} + 3i \right) - \left( -\frac{1}{2} + 3i \right), \left( -\frac{1}{2} - 3i \right) - \left( -\frac{1}{2} + 3i \right) \right) \\ & = \left( 0, \left( -\frac{1}{2} - 3i \right) - \left( -\frac{1}{2} + 3i \right) \right) \end{align*} \][/tex]
3. Simplificamos la resta en el segundo componente del par ordenado:
[tex]\[ \left( -\frac{1}{2} - 3i \right) - \left( -\frac{1}{2} + 3i \right) = -\frac{1}{2} - 3i + \frac{1}{2} - 3i = -6i \][/tex]
Por lo tanto, la expresión final es:
[tex]\[ \left( (z, \bar{z}) - z \right) = \left( 0, -6i \right) \][/tex]
Así obtenemos la solución:
[tex]\[ (z, \bar{z}) - z = (0, -6i) \][/tex]