15. If [tex]\(|a| = 4\)[/tex], [tex]\(|b| = \sqrt{3}\)[/tex], and [tex]\(a, b = -3\)[/tex], the magnitude of [tex]\(a - b\)[/tex] is equal to:
A. 7
B. 5
C. [tex]\(\sqrt{13}\)[/tex]
D. [tex]\(\sqrt{22}\)[/tex]
16. If [tex]\(A\)[/tex] is perpendicular to [tex]\(B\)[/tex], then the cosine of the angle between [tex]\(A\)[/tex] and [tex]\(A - B\)[/tex] is:
A. [tex]\(\frac{|A - B|}{|A|}\)[/tex]
B. [tex]\(\frac{|A - B|}{|B|}\)[/tex]
C. [tex]\(\frac{|A|}{|A - B|}\)[/tex]
D. [tex]\(\frac{|B|}{|A - B|}\)[/tex]
17. If [tex]\(\theta\)[/tex] is the angle between the vector [tex]\(A = 2i - j\)[/tex] and [tex]\(B = i + j\)[/tex], then [tex]\(\cos \theta\)[/tex] is equal to:
A. [tex]\(\frac{1}{2}\)[/tex]
B. [tex]\(\frac{\sqrt{3}}{2}\)[/tex]
C. [tex]\(\frac{2}{\sqrt{5}}\)[/tex]
D. [tex]\(\frac{1}{\sqrt{10}}\)[/tex]
18. Which of the following is a vector parallel and in the opposite direction to [tex]\(A = 3\)[/tex]?
A. [tex]\(\frac{3}{2}i - 2j\)[/tex]
B. [tex]\(-\frac{3}{2}i + 2j\)[/tex]
C. [tex]\(-6i - 8j\)[/tex]
D. [tex]\(6i - 8j\)[/tex]
19. Let [tex]\(|a|\)[/tex] denote the length of vector [tex]\(a\)[/tex]. Suppose [tex]\(|a| = 3\)[/tex], [tex]\(b\)[/tex] is not a vector, and the angle between [tex]\(a\)[/tex] and [tex]\(b\)[/tex] is [tex]\(\theta = \frac{\pi}{3}\)[/tex]. What is the magnitude of [tex]\(|a - 2b|\)[/tex]?
A. [tex]\(\sqrt{5}\)[/tex]
B. [tex]\(\sqrt{7}\)[/tex]
C. [tex]\(\sqrt{8}\)[/tex]
D. [tex]\(\sqrt{19}\)[/tex]
20. If [tex]\(v = (2, -2\sqrt{3})\)[/tex] is a positive vector, then what are the magnitude and direction, respectively, of the vector?
A. [tex]\(-4, 60^{\circ}\)[/tex]
B. [tex]\(4, 300^{\circ}\)[/tex]
C. [tex]\(12, -60^{\circ}\)[/tex]
D. [tex]\(12, 300^{\circ}\)[/tex]
21. If [tex]\(u = i + 3j + 4k\)[/tex] and [tex]\(v = 2i + 7j - 5k\)[/tex], then the cross product [tex]\(u \times v\)[/tex] is equal to:
A. [tex]\(43i + 13j + k\)[/tex]
B. [tex]\(43i - 13j + k\)[/tex]
C. [tex]\(-43i + 13j + k\)[/tex]
D. [tex]\(-43i + 13j - k\)[/tex]
22. If [tex]\(u = 3i + 4j + 5k\)[/tex] and [tex]\(v = 7i + 8j + 9k\)[/tex], then the magnitude of [tex]\(u \times v\)[/tex] is equal to:
A. [tex]\(-4\sqrt{6}\)[/tex]
B. [tex]\(4\sqrt{6}\)[/tex]
C. [tex]\(-2\sqrt{6}\)[/tex]
D. [tex]\(2\sqrt{6}\)[/tex]
23. Let [tex]\(u\)[/tex] and [tex]\(v\)[/tex] be two vectors with [tex]\(|u| = 3\)[/tex] and [tex]\(|v| = 6\)[/tex], and [tex]\(\theta = \frac{\pi}{3}\)[/tex]. Find [tex]\(|3u - 2v|\)[/tex].
24. Let [tex]\(u\)[/tex] and [tex]\(v\)[/tex] be two vectors with [tex]\(|u| = 7\)[/tex] and [tex]\(|v| = 3\)[/tex], and [tex]\(\theta = \frac{\pi}{3}\)[/tex]. Find [tex]\(|u + v|\)[/tex].
25. If [tex]\(u = (3, 6)\)[/tex], [tex]\(v = (8, 4)\)[/tex], and [tex]\(w = (2, 7)\)[/tex], then [tex]\(u - (v - w) =\)[/tex].
26. Let [tex]\(A = \begin{pmatrix} 3 & x - 1 \\ 1 & x \end{pmatrix}\)[/tex]. If [tex]\(\det(A) = 0\)[/tex], determine the values of [tex]\(x\)[/tex].
27. Using Cramer's rule (if possible), solve the following system of linear equations:
[tex]\[
\begin{cases}
2x + 3y - 5z = 1 \\
x + y - z = 2 \\
2y + z = 8
\end{cases}
\][/tex]