Solve: [tex]\((2a^2 + 5a + 2)^{\frac{1}{2}} = 3\)[/tex]

A. [tex]\(a = -\frac{7}{2}\)[/tex]
B. [tex]\(a = 1\)[/tex]
C. [tex]\(a = -\frac{7}{2}\)[/tex] or [tex]\(a = 1\)[/tex]
D. No real solution



Answer :

Alright, let's solve the equation step-by-step!

We start with the equation:

[tex]\[ \left(2 a^2 + 5 a + 2\right)^{\frac{1}{2}} = 3 \][/tex]

To eliminate the square root, we can square both sides of the equation:

[tex]\[ \left[ \left(2 a^2 + 5 a + 2\right)^{\frac{1}{2}} \right]^2 = 3^2 \][/tex]

This simplifies to:

[tex]\[ 2 a^2 + 5 a + 2 = 9 \][/tex]

Next, we subtract 9 from both sides to set the equation to 0:

[tex]\[ 2 a^2 + 5 a + 2 - 9 = 0 \][/tex]

So, we have:

[tex]\[ 2 a^2 + 5 a - 7 = 0 \][/tex]

This is a quadratic equation in the form [tex]\(ax^2 + bx + c = 0\)[/tex].

To find the solutions for [tex]\(a\)[/tex], we can use the quadratic formula:

[tex]\[ a = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

Here, [tex]\(a = 2\)[/tex], [tex]\(b = 5\)[/tex], and [tex]\(c = -7\)[/tex].

Plugging in these values:

[tex]\[ a = \frac{-5 \pm \sqrt{5^2 - 4 \cdot 2 \cdot (-7)}}{2 \cdot 2} \][/tex]

Simplifying inside the square root:

[tex]\[ a = \frac{-5 \pm \sqrt{25 + 56}}{4} \][/tex]

[tex]\[ a = \frac{-5 \pm \sqrt{81}}{4} \][/tex]

Since [tex]\(\sqrt{81} = 9\)[/tex], we have:

[tex]\[ a = \frac{-5 \pm 9}{4} \][/tex]

Now, we solve for the two possible values of [tex]\(a\)[/tex]:

1. For [tex]\(a = \frac{-5 + 9}{4}\)[/tex]:

[tex]\[ a = \frac{4}{4} = 1 \][/tex]

2. For [tex]\(a = \frac{-5 - 9}{4}\)[/tex]:

[tex]\[ a = \frac{-14}{4} = -3.5 \][/tex]

Therefore, the solutions to the equation are:

[tex]\[ a = 1 \quad \text{or} \quad a = -3.5 \][/tex]

Hence, the correct answers are:

[tex]\[ a = -\frac{7}{2} \quad \text{(which is -3.5)} \quad \text{or} \quad a = 1 \][/tex]
See the image please
View image priyagideon01