Answer :
To solve the inequality [tex]\( |2n + 5| > 1 \)[/tex], we will consider the definition of the absolute value function. The inequality [tex]\(|x| > a\)[/tex] implies [tex]\(x < -a\)[/tex] or [tex]\(x > a\)[/tex].
Let's break it down step-by-step:
1. Start with the given inequality:
[tex]\[ |2n + 5| > 1 \][/tex]
2. Since the absolute value inequality [tex]\(|x| > a\)[/tex] translates to [tex]\(x < -a\)[/tex] or [tex]\(x > a\)[/tex], we can write:
[tex]\[ 2n + 5 < -1 \quad \text{or} \quad 2n + 5 > 1 \][/tex]
3. Solve each part of the inequality separately.
First part: [tex]\(2n + 5 < -1\)[/tex]
Subtract 5 from both sides:
[tex]\[ 2n < -1 - 5 \][/tex]
[tex]\[ 2n < -6 \][/tex]
Divide both sides by 2:
[tex]\[ n < -3 \][/tex]
Second part: [tex]\(2n + 5 > 1\)[/tex]
Subtract 5 from both sides:
[tex]\[ 2n > 1 - 5 \][/tex]
[tex]\[ 2n > -4 \][/tex]
Divide both sides by 2:
[tex]\[ n > -2 \][/tex]
4. Combining the two parts, we get:
[tex]\[ n < -3 \quad \text{or} \quad n > -2 \][/tex]
Thus, the solution to the inequality [tex]\( |2n + 5| > 1 \)[/tex] is:
[tex]\[ n < -3 \quad \text{or} \quad n > -2 \][/tex]
The correct answer choice is:
[tex]\[ n < -3 \quad \text{or} \quad n > -2 \][/tex]
Let's break it down step-by-step:
1. Start with the given inequality:
[tex]\[ |2n + 5| > 1 \][/tex]
2. Since the absolute value inequality [tex]\(|x| > a\)[/tex] translates to [tex]\(x < -a\)[/tex] or [tex]\(x > a\)[/tex], we can write:
[tex]\[ 2n + 5 < -1 \quad \text{or} \quad 2n + 5 > 1 \][/tex]
3. Solve each part of the inequality separately.
First part: [tex]\(2n + 5 < -1\)[/tex]
Subtract 5 from both sides:
[tex]\[ 2n < -1 - 5 \][/tex]
[tex]\[ 2n < -6 \][/tex]
Divide both sides by 2:
[tex]\[ n < -3 \][/tex]
Second part: [tex]\(2n + 5 > 1\)[/tex]
Subtract 5 from both sides:
[tex]\[ 2n > 1 - 5 \][/tex]
[tex]\[ 2n > -4 \][/tex]
Divide both sides by 2:
[tex]\[ n > -2 \][/tex]
4. Combining the two parts, we get:
[tex]\[ n < -3 \quad \text{or} \quad n > -2 \][/tex]
Thus, the solution to the inequality [tex]\( |2n + 5| > 1 \)[/tex] is:
[tex]\[ n < -3 \quad \text{or} \quad n > -2 \][/tex]
The correct answer choice is:
[tex]\[ n < -3 \quad \text{or} \quad n > -2 \][/tex]