What is the solution to the inequality [tex]\( |2n + 5| \ \textgreater \ 1 \)[/tex]?

A. [tex]\( -3 \ \textgreater \ n \ \textgreater \ -2 \)[/tex]

B. [tex]\( 2 \ \textless \ n \ \textless \ 3 \)[/tex]

C. [tex]\( n \ \textless \ -3 \)[/tex] or [tex]\( n \ \textgreater \ -2 \)[/tex]

D. [tex]\( n \ \textless \ 2 \)[/tex] or [tex]\( n \ \textgreater \ 3 \)[/tex]



Answer :

To solve the inequality [tex]\( |2n + 5| > 1 \)[/tex], we will consider the definition of the absolute value function. The inequality [tex]\(|x| > a\)[/tex] implies [tex]\(x < -a\)[/tex] or [tex]\(x > a\)[/tex].

Let's break it down step-by-step:

1. Start with the given inequality:
[tex]\[ |2n + 5| > 1 \][/tex]

2. Since the absolute value inequality [tex]\(|x| > a\)[/tex] translates to [tex]\(x < -a\)[/tex] or [tex]\(x > a\)[/tex], we can write:
[tex]\[ 2n + 5 < -1 \quad \text{or} \quad 2n + 5 > 1 \][/tex]

3. Solve each part of the inequality separately.

First part: [tex]\(2n + 5 < -1\)[/tex]

Subtract 5 from both sides:
[tex]\[ 2n < -1 - 5 \][/tex]
[tex]\[ 2n < -6 \][/tex]

Divide both sides by 2:
[tex]\[ n < -3 \][/tex]

Second part: [tex]\(2n + 5 > 1\)[/tex]

Subtract 5 from both sides:
[tex]\[ 2n > 1 - 5 \][/tex]
[tex]\[ 2n > -4 \][/tex]

Divide both sides by 2:
[tex]\[ n > -2 \][/tex]

4. Combining the two parts, we get:
[tex]\[ n < -3 \quad \text{or} \quad n > -2 \][/tex]

Thus, the solution to the inequality [tex]\( |2n + 5| > 1 \)[/tex] is:
[tex]\[ n < -3 \quad \text{or} \quad n > -2 \][/tex]

The correct answer choice is:
[tex]\[ n < -3 \quad \text{or} \quad n > -2 \][/tex]