What is the solution to the system of equations?

[tex]\[
\begin{array}{l}
y=\frac{2}{3} x+3 \\
x=-2
\end{array}
\][/tex]

A. [tex]\(\left(-2, -\frac{15}{2}\right)\)[/tex]

B. [tex]\(\left(-2, \frac{5}{3}\right)\)[/tex]

C. [tex]\(\left(-2, \frac{11}{6}\right)\)[/tex]

D. [tex]\(\left(-2, \frac{13}{3}\right)\)[/tex]



Answer :

To solve the system of equations:

[tex]\[ \begin{array}{l} y=\frac{2}{3} x+3 \\ x=-2 \end{array} \][/tex]

we need to find the value of [tex]\( y \)[/tex] when [tex]\( x = -2 \)[/tex]. Follow these steps:

1. Substitute [tex]\( x = -2 \)[/tex] into the first equation [tex]\( y = \frac{2}{3}x + 3 \)[/tex]:

[tex]\[ y = \frac{2}{3}(-2) + 3 \][/tex]

2. Simplify the expression:

[tex]\[ y = \frac{2 \cdot (-2)}{3} + 3 = \frac{-4}{3} + 3 \][/tex]

3. Convert [tex]\( 3 \)[/tex] to a fraction with a denominator of 3 to add to [tex]\(\frac{-4}{3}\)[/tex]:

[tex]\[ y = \frac{-4}{3} + \frac{9}{3} \][/tex]

4. Add the fractions:

[tex]\[ y = \frac{-4 + 9}{3} = \frac{5}{3} \][/tex]

So, the result is [tex]\( y = \frac{5}{3} \)[/tex].

Comparing this with the given options:
[tex]\[ \left(-2, -\frac{15}{2}\right) \left(-2, \frac{5}{3}\right) \left(-2, \frac{11}{6}\right) \left(-2, \frac{13}{3}\right) \][/tex]

The correct solution corresponds to the point [tex]\((-2, \frac{5}{3})\)[/tex].

Thus, the correct option is:

[tex]\(\boxed{2}\)[/tex]