The graph of the reciprocal parent function, [tex]\( f(x) = \frac{1}{x} \)[/tex], is shifted 3 units up and 4 units to the right to create the graph of [tex]\( g(x) \)[/tex]. What function is [tex]\( g(x) \)[/tex]?

A. [tex]\( g(x) = \frac{1}{x-3} + 4 \)[/tex]
B. [tex]\( g(x) = \frac{1}{x-4} + 3 \)[/tex]
C. [tex]\( g(x) = \frac{1}{x+3} + 4 \)[/tex]
D. [tex]\( g(x) = \frac{1}{x+4} + 3 \)[/tex]



Answer :

To find the function [tex]\( g(x) \)[/tex] after shifting the graph of [tex]\( f(x) = \frac{1}{x} \)[/tex] 3 units up and 4 units to the right, we need to understand how these transformations affect the function.

### Horizontal Shift

A horizontal shift to the right involves replacing [tex]\( x \)[/tex] with [tex]\( x - h \)[/tex] in the function, where [tex]\( h \)[/tex] is the number of units shifted. For a shift 4 units to the right:

For [tex]\( f(x) = \frac{1}{x} \)[/tex], after shifting 4 units to the right, we get:

[tex]\[ f(x - 4) = \frac{1}{x - 4} \][/tex]

### Vertical Shift

A vertical shift up involves adding a constant [tex]\( k \)[/tex] to the function, where [tex]\( k \)[/tex] is the number of units shifted. For a shift 3 units up:

For [tex]\( \frac{1}{x - 4} \)[/tex], after shifting 3 units up, we add 3 to the function:

[tex]\[ g(x) = \frac{1}{x - 4} + 3 \][/tex]

### Conclusion Regarding the Choices

Let's check the answers provided:

A. [tex]\( g(x) = \frac{1}{x - 3} + 4 \)[/tex]

- This represents a shift 3 units to the right and 4 units up, which does not match the required shift.

B. [tex]\( g(x) = \frac{1}{x - 4} + 3 \)[/tex]

- This represents a shift 4 units to the right and 3 units up, which exactly matches the required shift.

C. [tex]\( g(x) = \frac{1}{x + 3} + 4 \)[/tex]

- This represents a shift 3 units to the left and 4 units up, which does not match the required shift.

D. [tex]\( g(x) = \frac{1}{x + 4} + 3 \)[/tex]

- This represents a shift 4 units to the left and 3 units up, which does not match the required shift.

Thus, the correct function [tex]\( g(x) \)[/tex] given the described transformations is:

[tex]\[ \boxed{g(x) = \frac{1}{x - 4} + 3} \][/tex]