Drag each tile to the correct location on the table. Each tile can be used more than once, but not all tiles will be used.

Choose the justification for each step in the solution to the given equation.

Given
Subtraction Property of Equality
Simplification
Multiplication Property of Equality

[tex]\[
\begin{tabular}{|r|l|}
\hline
Step & Justification \\
\hline
$\frac{17}{3}-\frac{3}{4} x=\frac{1}{2} x+5$ & Given \\
\hline
$\frac{17}{3}-\frac{3}{4} x-\frac{17}{3}=\frac{1}{2} x+5-\frac{17}{3}$ & Subtraction Property of Equality \\
\hline
$-\frac{3}{4} x-\frac{1}{2} x=\frac{1}{2} x-\frac{2}{3} x-\frac{2}{3}-\frac{1}{2} x$ & Simplification \\
\hline
$-\frac{5}{4} x=\frac{2}{3} x-\frac{4}{3}=-\frac{4}{3}$ & Simplification \\
\hline
$x=\frac{8}{15} x$ & Multiplication Property of Equality \\
\hline
\end{tabular}
\][/tex]



Answer :

Sure, let's provide the correct justifications for each step in the solution:

\begin{tabular}{|r|l|}
\hline
Step & Justification \\
\hline
[tex]$\frac{17}{3} - \frac{3}{4} x = \frac{1}{2} x + 5$[/tex] & given \\
\hline
[tex]$\frac{17}{3} - \frac{3}{4} x - \frac{17}{3} = \frac{1}{2} x + 5 - \frac{17}{3}$[/tex] & subtraction property of equality \\
\hline
[tex]$-\frac{3}{4} x - \frac{1}{2} x = \frac{1}{2} x - \frac{2}{3} x - \frac{2}{3} - \frac{1}{2} x$[/tex] & simplification \\
\hline
[tex]$-\frac{5}{4} x = \frac{2}{3} x - \frac{4}{3} = -\frac{4}{3}$[/tex] & simplification \\
\hline
[tex]$x = \frac{8}{15} x$[/tex] & simplification \\
\hline
\end{tabular}

This breakdown aligns with the steps and justifications derived from reasoning about the equation.