Simplify the expression:

[tex]\[ 3(7mn + 3k) + 2(5k - 2mn) \][/tex]

A. [tex]\( 11mn + k \)[/tex]
B. [tex]\( 17mn + 19k \)[/tex]
C. [tex]\( 21mn - k \)[/tex]
D. [tex]\( 21mn + 5k \)[/tex]



Answer :

Let's simplify the given expression step-by-step:

[tex]\[ 3(7mn + 3k) + 2(5k - 2mn) \][/tex]

1. Distributing the constants inside the parentheses:

- First distribute [tex]\(3\)[/tex] into [tex]\(7mn + 3k\)[/tex]:
[tex]\[ 3(7mn) + 3(3k) = 21mn + 9k \][/tex]

- Next, distribute [tex]\(2\)[/tex] into [tex]\(5k - 2mn\)[/tex]:
[tex]\[ 2(5k) - 2(2mn) = 10k - 4mn \][/tex]

2. Combining the terms:
Collect the terms obtained from the distribution:
[tex]\[ 21mn + 9k + 10k - 4mn \][/tex]

3. Combine the like terms:
- Combine the [tex]\(mn\)[/tex] terms:
[tex]\[ 21mn - 4mn = 17mn \][/tex]

- Combine the [tex]\(k\)[/tex] terms:
[tex]\[ 9k + 10k = 19k \][/tex]

4. Write the final simplified expression:
[tex]\[ 17mn + 19k \][/tex]

So, the final expression simplifies to:
[tex]\[ 17mn + 19k \][/tex]

Therefore, the correct answer is:

B [tex]\(17mn + 19k\)[/tex]