The function [tex]\( f(x) \)[/tex] is to be graphed on a coordinate plane.

[tex]\[
f(x) = \begin{cases}
-x, & x \ \textless \ 0 \\
1, & x \geq 0
\end{cases}
\][/tex]

At what point should an open circle be drawn?

A. [tex]\((-1, 0)\)[/tex]
B. [tex]\((0, 0)\)[/tex]
C. [tex]\((0, 1)\)[/tex]
D. [tex]\((1, 0)\)[/tex]



Answer :

To determine where the open circle should be drawn for the given piecewise function
[tex]\[ f(x)=\begin{cases} -x, & x<0 \\ 1, & x \geq 0 \end{cases} \][/tex]
let's carefully analyze the definition of the function at [tex]\(x = 0\)[/tex].

1. For [tex]\(x < 0\)[/tex]:
The function is defined as [tex]\(f(x) = -x\)[/tex]. This means that for any negative value of [tex]\(x\)[/tex], [tex]\(f(x)\)[/tex] will be the negative of [tex]\(x\)[/tex].

2. For [tex]\(x \geq 0\)[/tex]:
The function is defined as [tex]\(f(x) = 1\)[/tex]. This means that for any value of [tex]\(x\)[/tex] equal to or greater than 0, the function value will be 1.

At [tex]\(x = 0\)[/tex], [tex]\(f(0) = 1\)[/tex].

3. Open Circle Consideration:
The point at which the function changes its definition needs careful consideration. When [tex]\(x = 0\)[/tex], the function value according to the [tex]\(x < 0\)[/tex] definition is [tex]\(f(0) = -0 = 0\)[/tex], but since this is not inclusive when [tex]\(x \geq 0\)[/tex], the function takes the value [tex]\(f(0) = 1\)[/tex].

Therefore, for the function [tex]\(f(x)\)[/tex] to be correctly represented:

- The transition occurs at [tex]\(x = 0\)[/tex], and the point [tex]\((0, 0)\)[/tex] should be represented as an open circle to indicate that the point [tex]\( (0, 0) \)[/tex] is not included in the domain for the [tex]\( -x \)[/tex] part and instead jumps to [tex]\( (0, 1) \)[/tex].

So, the open circle should be drawn at [tex]\((0, 0)\)[/tex].

Hence, the correct answer is:

[tex]\[ \boxed{(0, 0)} \][/tex]