The resting heart rates for 80 women aged 46-55 in a simple random sample are normally distributed with a mean of 71 beats per minute and a standard deviation of 6 beats per minute. Assuming a 90% confidence level (z-score of 1.645), what is the margin of error for the population mean?

Remember, the margin of error (ME) can be determined using the formula [tex]\( ME = \frac{z \cdot s}{\sqrt{n}} \)[/tex].

A. 0.66
B. 1.10
C. 1.31
D. 1.73



Answer :

To determine the margin of error (ME) for the population mean, we'll follow these steps and use the given formula: [tex]\(ME = \frac{z \cdot s}{\sqrt{n}}\)[/tex].

Let's break it down step-by-step:

1. Identify the given values:
- Sample size (n): [tex]\(80\)[/tex]
- Sample mean ( [tex]\(\bar{x}\)[/tex]): 71 beats per minute (though not required for the margin of error calculation)
- Sample standard deviation (s): [tex]\(6\)[/tex]
- [tex]\(z\)[/tex]-score for a 90% confidence level: [tex]\(1.645\)[/tex]

2. Plug these values into the formula:
[tex]\[ ME = \frac{z \cdot s}{\sqrt{n}} \][/tex]
Substitute the given values:
[tex]\[ ME = \frac{1.645 \cdot 6}{\sqrt{80}} \][/tex]

3. Calculate the denominator (the square root of the sample size):
[tex]\[ \sqrt{80} \approx 8.944 \][/tex]

4. Calculate the numerator (the product of [tex]\(z\)[/tex]-score and the standard deviation):
[tex]\[ 1.645 \cdot 6 = 9.87 \][/tex]

5. Perform the division:
[tex]\[ ME = \frac{9.87}{8.944} \approx 1.1035 \][/tex]

So, rounding to two decimal places, the margin of error is approximately:

[tex]\[ ME \approx 1.10 \][/tex]

The answer is therefore [tex]\(1.10\)[/tex].