Which equation is equivalent to [tex]\(16^{2p} = 32^{p+3}\)[/tex]?

A. [tex]\(8^{4p} = 8^{4p+3}\)[/tex]
B. [tex]\(8^{4p} = 8^{4p+12}\)[/tex]
C. [tex]\(2^{8p} = 2^{5p+15}\)[/tex]
D. [tex]\(2^{8p} = 2^{5p+3}\)[/tex]



Answer :

Let's solve the given equation step-by-step to find out which equation is equivalent to [tex]\(16^{2p} = 32^{p+3}\)[/tex].

1. Rewrite the bases in terms of powers of 2:
[tex]\[ 16 = 2^4 \quad \text{and} \quad 32 = 2^5 \][/tex]

2. Substitute these expressions into the equation:
[tex]\[ (2^4)^{2p} = (2^5)^{p+3} \][/tex]

3. Simplify the exponents using the power rule [tex]\((a^m)^n = a^{m \cdot n}\)[/tex] for both sides:
[tex]\[ 2^{4 \cdot 2p} = 2^{5 \cdot (p+3)} \][/tex]
[tex]\[ 2^{8p} = 2^{5p + 15} \][/tex]

4. We now have the equation in the form [tex]\(2^{8p} = 2^{5p + 15}\)[/tex]. Since the bases are the same, we can equate the exponents:
[tex]\[ 8p = 5p + 15 \][/tex]

5. Solving for [tex]\(p\)[/tex]:
[tex]\[ 8p - 5p = 15 \][/tex]
[tex]\[ 3p = 15 \][/tex]
[tex]\[ p = 5 \][/tex]

Thus, the equivalent equation to [tex]\(16^{2p} = 32^{p+3}\)[/tex] is [tex]\(2^{8p} = 2^{5p + 15}\)[/tex].

Now let's match this with the given options:

1. [tex]\(8^{4p} = 8^{4p+3}\)[/tex]
2. [tex]\(8^{4p} = 8^{4p+12}\)[/tex]
3. [tex]\(2^{8 \rho} = 2^{5 \rho + 15}\)[/tex]
4. [tex]\(2^{8p} = 2^{5p+3}\)[/tex]

The correct matching option from the list is:

[tex]\[ \boxed{4} \][/tex]