Answer :

Sure, let's solve the equation step-by-step.

Given equation:
[tex]\[ -4(x - 5) + 8x = 9x - 3 \][/tex]

First, distribute the [tex]\(-4\)[/tex] through the expression inside the parentheses:
[tex]\[ -4 \cdot x - 4 \cdot (-5) + 8x = 9x - 3 \][/tex]
[tex]\[ -4x + 20 + 8x = 9x - 3 \][/tex]

Next, combine like terms on the left side ([tex]\(-4x + 8x\)[/tex]):
[tex]\[ 4x + 20 = 9x - 3 \][/tex]

Now, to isolate the variable terms on one side, subtract [tex]\(9x\)[/tex] from both sides:
[tex]\[ 4x - 9x + 20 = -3 \][/tex]
[tex]\[ -5x + 20 = -3 \][/tex]

Next, move the constant term ([tex]\(20\)[/tex]) to the right side by subtracting [tex]\(20\)[/tex] from both sides:
[tex]\[ -5x = -3 - 20 \][/tex]
[tex]\[ -5x = -23 \][/tex]

So, the equation equivalent to the given one is:
[tex]\[ -5x = -23 \][/tex]

Thus, the correct answer is:
[tex]\[ \boxed{D. -5x = -23} \][/tex]