Sure, let's solve the equation step-by-step.
Given equation:
[tex]\[
-4(x - 5) + 8x = 9x - 3
\][/tex]
First, distribute the [tex]\(-4\)[/tex] through the expression inside the parentheses:
[tex]\[
-4 \cdot x - 4 \cdot (-5) + 8x = 9x - 3
\][/tex]
[tex]\[
-4x + 20 + 8x = 9x - 3
\][/tex]
Next, combine like terms on the left side ([tex]\(-4x + 8x\)[/tex]):
[tex]\[
4x + 20 = 9x - 3
\][/tex]
Now, to isolate the variable terms on one side, subtract [tex]\(9x\)[/tex] from both sides:
[tex]\[
4x - 9x + 20 = -3
\][/tex]
[tex]\[
-5x + 20 = -3
\][/tex]
Next, move the constant term ([tex]\(20\)[/tex]) to the right side by subtracting [tex]\(20\)[/tex] from both sides:
[tex]\[
-5x = -3 - 20
\][/tex]
[tex]\[
-5x = -23
\][/tex]
So, the equation equivalent to the given one is:
[tex]\[
-5x = -23
\][/tex]
Thus, the correct answer is:
[tex]\[
\boxed{D. -5x = -23}
\][/tex]