One [tex]\(x\)[/tex]-intercept for a parabola is at the point [tex]\((2.5, 0)\)[/tex]. Use the quadratic formula to find the other [tex]\(x\)[/tex]-intercept for the parabola defined by this equation:

[tex]\[ y = 2x^2 - x - 10 \][/tex]

Separate the values with a comma. Round, if necessary, to the nearest hundredth.

Enter the correct answer:



Answer :

To find the x-intercepts for the parabola defined by the equation [tex]\( y = 2x^2 - x - 10 \)[/tex], we can use the quadratic formula: [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex].

Given the quadratic equation in the standard form [tex]\( ax^2 + bx + c = 0 \)[/tex], we have:
[tex]\[ a = 2 \][/tex]
[tex]\[ b = -1 \][/tex]
[tex]\[ c = -10 \][/tex]

1. Calculate the Discriminant:
[tex]\[ \text{Discriminant} = b^2 - 4ac \][/tex]
Substituting the values:
[tex]\[ \text{Discriminant} = (-1)^2 - 4 \cdot 2 \cdot (-10) = 1 + 80 = 81 \][/tex]

2. Calculate the Square Root of the Discriminant:
[tex]\[ \sqrt{81} = 9 \][/tex]

3. Apply the Quadratic Formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Substituting [tex]\( b = -1 \)[/tex], [tex]\(\sqrt{b^2 - 4ac} = 9\)[/tex], and [tex]\( a = 2 \)[/tex]:
[tex]\[ x_1 = \frac{-(-1) + 9}{2 \cdot 2} = \frac{1 + 9}{4} = \frac{10}{4} = 2.5 \][/tex]
[tex]\[ x_2 = \frac{-(-1) - 9}{2 \cdot 2} = \frac{1 - 9}{4} = \frac{-8}{4} = -2.0 \][/tex]

4. Determine the Correct Intercept:
One of the x-intercepts is given as [tex]\((2.5, 0)\)[/tex]. Thus, the other x-intercept calculated must be the correct one.

So, the other [tex]\( x \)[/tex]-intercept is:

[tex]\[ \boxed{2.5, -2.00} \][/tex]

Given that one [tex]\( x \)[/tex]-intercept is [tex]\( (2.5, 0) \)[/tex], the other [tex]\( x \)[/tex]-intercept for the equation [tex]\( y = 2x^2 - x - 10 \)[/tex] is:
[tex]\[ -2.00 \][/tex]