Answered

What is the midpoint of the line segment with endpoints (3.2, 2.5) and (1.6, -4.5)?

A. (4.8, -1)
B. (2.4, -1)
C. (4.8, -2)
D. (2.4, -2)



Answer :

To find the midpoint of a line segment with given endpoints [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex], we can use the midpoint formula, which is:

[tex]\[ \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]

Given the endpoints [tex]\((3.2, 2.5)\)[/tex] and [tex]\((1.6, -4.5)\)[/tex], let's find each component of the midpoint step-by-step.

1. Calculate the [tex]\(x\)[/tex]-coordinate of the midpoint:
[tex]\[ \frac{x_1 + x_2}{2} = \frac{3.2 + 1.6}{2} \][/tex]

Adding the [tex]\(x\)[/tex]-coordinates:
[tex]\[ 3.2 + 1.6 = 4.8 \][/tex]

Now, divide by 2:
[tex]\[ \frac{4.8}{2} = 2.4 \][/tex]

So, the [tex]\(x\)[/tex]-coordinate of the midpoint is [tex]\(2.4\)[/tex].

2. Calculate the [tex]\(y\)[/tex]-coordinate of the midpoint:
[tex]\[ \frac{y_1 + y_2}{2} = \frac{2.5 + (-4.5)}{2} \][/tex]

Adding the [tex]\(y\)[/tex]-coordinates:
[tex]\[ 2.5 + (-4.5) = 2.5 - 4.5 = -2.0 \][/tex]

Now, divide by 2:
[tex]\[ \frac{-2.0}{2} = -1.0 \][/tex]

So, the [tex]\(y\)[/tex]-coordinate of the midpoint is [tex]\(-1\)[/tex].

Therefore, the midpoint of the line segment is:

[tex]\[ (2.4, -1) \][/tex]

The correct answer is:
B. [tex]\((2.4, -1)\)[/tex]