Answered

Use the grouping method to factor this polynomial:

[tex]\[ x^3 + 2x^2 + 12x + 24 \][/tex]

A. [tex]\((x^2 + 6)(x + 2)\)[/tex]

B. [tex]\((x^2 + 2)(x + 12)\)[/tex]

C. [tex]\((x^2 + 2)(x + 6)\)[/tex]

D. [tex]\((x^2 + 12)(x + 2)\)[/tex]



Answer :

Certainly! To factor the polynomial [tex]\(x^3 + 2x^2 + 12x + 24\)[/tex] using the grouping method, follow these steps:

1. Group the terms:
Split the polynomial into two groups that can be factored separately:
[tex]\[ x^3 + 2x^2 + 12x + 24 = (x^3 + 2x^2) + (12x + 24) \][/tex]

2. Factor out the greatest common factor (GCF) from each group:
- From the first group [tex]\(x^3 + 2x^2\)[/tex], we can factor out [tex]\(x^2\)[/tex]:
[tex]\[ x^3 + 2x^2 = x^2(x + 2) \][/tex]
- From the second group [tex]\(12x + 24\)[/tex], we can factor out [tex]\(12\)[/tex]:
[tex]\[ 12x + 24 = 12(x + 2) \][/tex]

3. Combine the factored groups:
After factoring each group, we get:
[tex]\[ x^3 + 2x^2 + 12x + 24 = x^2(x + 2) + 12(x + 2) \][/tex]

4. Factor out the common binomial factor [tex]\((x + 2)\)[/tex]:
Notice that both terms have a common factor of [tex]\((x + 2)\)[/tex]:
[tex]\[ x^2(x + 2) + 12(x + 2) = (x^2 + 12)(x + 2) \][/tex]

Thus, the polynomial [tex]\(x^3 + 2x^2 + 12x + 24\)[/tex] can be factored as:
[tex]\[ (x^2 + 12)(x + 2) \][/tex]

Given the choices:
- A. [tex]\(\left(x^2+6\right)(x+2)\)[/tex]
- B. [tex]\(\left(x^2+2\right)(x+12)\)[/tex]
- C. [tex]\(\left(x^2+2\right)(x+6)\)[/tex]
- D. [tex]\(\left(x^2+12\right)(x+2)\)[/tex]

The correct option is:
[tex]\[ \boxed{(x^2 + 12)(x + 2)} \][/tex]
Therefore, the correct choice is [tex]\( \text{D} \)[/tex].