Solve the following equations for x:

1. [tex]\( 20x = 95 \)[/tex]
2. [tex]\( 11x = 24 \)[/tex]
3. [tex]\( x + 13 = 21 \)[/tex]

Provide your answers in the format [tex]\( x = \_\_ \)[/tex].

\begin{tabular}{|l|l|}
\hline
Equation & Solution \\
\hline
[tex]\( 20x = 95 \)[/tex] & [tex]\( x = \_\_ \)[/tex] \\
\hline
[tex]\( 11x = 24 \)[/tex] & [tex]\( x = \_\_ \)[/tex] \\
\hline
[tex]\( x + 13 = 21 \)[/tex] & [tex]\( x = \_\_ \)[/tex] \\
\hline
\end{tabular}



Answer :

Let's solve the equations given one by one.

First Equation: [tex]\(20x = 95\)[/tex]
To isolate [tex]\(x\)[/tex], divide both sides by 20:
[tex]\[ x = \frac{95}{20} \][/tex]
By performing the division, we get:
[tex]\[ x = 4.75 \][/tex]

Second Equation: [tex]\(11x = 24\)[/tex]
To isolate [tex]\(x\)[/tex], divide both sides by 11:
[tex]\[ x = \frac{24}{11} \][/tex]
By performing the division, we get:
[tex]\[ x = 2.1818181818181817 \][/tex]

Third Equation: [tex]\(x + 13 = 21\)[/tex]
To isolate [tex]\(x\)[/tex], subtract 13 from both sides:
[tex]\[ x = 21 - 13 \][/tex]
Subtracting, we get:
[tex]\[ x = 8 \][/tex]

In summary, we have found the values of [tex]\(x\)[/tex] for each equation as follows:

1. For [tex]\(20x = 95\)[/tex], [tex]\(x = 4.75\)[/tex]
2. For [tex]\(11x = 24\)[/tex], [tex]\(x = 2.1818181818181817\)[/tex]
3. For [tex]\(x + 13 = 21\)[/tex], [tex]\(x = 8\)[/tex]

Thus, the solutions to the given equations are [tex]\(x = 4.75\)[/tex], [tex]\(x = 2.1818181818181817\)[/tex], and [tex]\(x = 8\)[/tex].