The table below represents an exponential function.

[tex]\[
\begin{tabular}{|c|c|}
\hline
$x$ & $y$ \\
\hline
0 & 1 \\
\hline
2 & 49 \\
\hline
4 & 2,401 \\
\hline
6 & 117,649 \\
\hline
\end{tabular}
\][/tex]

How do the [tex]$y$[/tex]-values in the table grow?

A. The [tex]$y$[/tex]-values increase by a factor of 49 for each [tex]$x$[/tex] increase of 1.
B. The [tex]$y$[/tex]-values increase by 49 for each [tex]$x$[/tex] increase of 1.
C. The [tex]$y$[/tex]-values increase by a factor of 7 for each [tex]$x$[/tex] increase of 1.
D. The [tex]$y$[/tex]-values increase by 7 for each [tex]$x$[/tex] increase of 1.



Answer :

To determine how the [tex]\( y \)[/tex]-values in the table grow, let's analyze the ratio in which [tex]\( y \)[/tex]-values increase as [tex]\( x \)[/tex]-values increase.

First, let's examine the pairs of consecutive [tex]\( x \)[/tex] and [tex]\( y \)[/tex] values given:

- When [tex]\( x = 0 \)[/tex], [tex]\( y = 1 \)[/tex]
- When [tex]\( x = 2 \)[/tex], [tex]\( y = 49 \)[/tex]
- When [tex]\( x = 4 \)[/tex], [tex]\( y = 2401 \)[/tex]
- When [tex]\( x = 6 \)[/tex], [tex]\( y = 117649 \)[/tex]

We'll compare each successive [tex]\( y \)[/tex]-value with its preceding value:

1. From [tex]\( x = 0 \)[/tex] to [tex]\( x = 2 \)[/tex]:
[tex]\[ \frac{y(2)}{y(0)} = \frac{49}{1} = 49 \][/tex]

2. From [tex]\( x = 2 \)[/tex] to [tex]\( x = 4 \)[/tex]:
[tex]\[ \frac{y(4)}{y(2)} = \frac{2401}{49} = 49 \][/tex]

3. From [tex]\( x = 4 \)[/tex] to [tex]\( x = 6 \)[/tex]:
[tex]\[ \frac{y(6)}{y(4)} = \frac{117649}{2401} = 49 \][/tex]

From these calculations, we see that each step (increase in [tex]\( x \)[/tex] by 2) results in the [tex]\( y \)[/tex]-value being multiplied by 49.

Now, because the [tex]\( x \)[/tex]-values increase by 2 each time but we want to find the factor in terms of each single unit increase in [tex]\( x \)[/tex], we need to consider this adjustment. Each multiplication factor for a [tex]\( \Delta x \)[/tex] of 2 results in:

[tex]\[ 49 \approx 7^2 \][/tex]

Thus, for each unit increase in [tex]\( x \)[/tex]:

[tex]\[ y \text{ increases by a factor of } 7^1 = 7 \][/tex]

Therefore, the [tex]\( y \)[/tex]-values increase by a factor of 7 for each [tex]\( x \)[/tex] increase of 1.

Hence, the correct answer is:
- The [tex]\( y \)[/tex]-values increase by a factor of 7 for each [tex]\( x \)[/tex] increase of 1.