Answered

A [tex]\( 7.2 \times 10^{-5} \)[/tex] C charge has an electric potential energy of [tex]\( 1.08 \times 10^{-2} \)[/tex] J. The electric potential, to the nearest whole number, is [tex]\( \square \)[/tex] V.



Answer :

To solve this problem, we need to find the electric potential [tex]\( V \)[/tex] given the charge [tex]\( Q \)[/tex] and the electric potential energy [tex]\( U \)[/tex]. The relationship between these quantities is given by the formula:

[tex]\[ V = \frac{U}{Q} \][/tex]

where:
- [tex]\( U \)[/tex] is the electric potential energy,
- [tex]\( Q \)[/tex] is the charge,
- [tex]\( V \)[/tex] is the electric potential.

The given values are:
- [tex]\( Q = 7.2 \times 10^{-5} \)[/tex] coulombs,
- [tex]\( U = 1.08 \times 10^{-2} \)[/tex] joules.

Now, we substitute these values into the formula:

[tex]\[ V = \frac{1.08 \times 10^{-2}}{7.2 \times 10^{-5}} \][/tex]

Dividing these values gives:

[tex]\[ V = 150.0 \, \text{volts} \][/tex]

Rounding the electric potential to the nearest whole number:

[tex]\[ V \approx 150 \, \text{volts} \][/tex]

Thus, the electric potential, to the nearest whole number, is [tex]\( 150 \)[/tex] V.