Answer :
To solve this problem, we need to find the electric potential [tex]\( V \)[/tex] given the charge [tex]\( Q \)[/tex] and the electric potential energy [tex]\( U \)[/tex]. The relationship between these quantities is given by the formula:
[tex]\[ V = \frac{U}{Q} \][/tex]
where:
- [tex]\( U \)[/tex] is the electric potential energy,
- [tex]\( Q \)[/tex] is the charge,
- [tex]\( V \)[/tex] is the electric potential.
The given values are:
- [tex]\( Q = 7.2 \times 10^{-5} \)[/tex] coulombs,
- [tex]\( U = 1.08 \times 10^{-2} \)[/tex] joules.
Now, we substitute these values into the formula:
[tex]\[ V = \frac{1.08 \times 10^{-2}}{7.2 \times 10^{-5}} \][/tex]
Dividing these values gives:
[tex]\[ V = 150.0 \, \text{volts} \][/tex]
Rounding the electric potential to the nearest whole number:
[tex]\[ V \approx 150 \, \text{volts} \][/tex]
Thus, the electric potential, to the nearest whole number, is [tex]\( 150 \)[/tex] V.
[tex]\[ V = \frac{U}{Q} \][/tex]
where:
- [tex]\( U \)[/tex] is the electric potential energy,
- [tex]\( Q \)[/tex] is the charge,
- [tex]\( V \)[/tex] is the electric potential.
The given values are:
- [tex]\( Q = 7.2 \times 10^{-5} \)[/tex] coulombs,
- [tex]\( U = 1.08 \times 10^{-2} \)[/tex] joules.
Now, we substitute these values into the formula:
[tex]\[ V = \frac{1.08 \times 10^{-2}}{7.2 \times 10^{-5}} \][/tex]
Dividing these values gives:
[tex]\[ V = 150.0 \, \text{volts} \][/tex]
Rounding the electric potential to the nearest whole number:
[tex]\[ V \approx 150 \, \text{volts} \][/tex]
Thus, the electric potential, to the nearest whole number, is [tex]\( 150 \)[/tex] V.