Given the table:

[tex]\[
\begin{array}{|c|c|}
\hline
x & y \\
\hline
-5 & 9 \\
\hline
1 & 0 \\
\hline
4 & -7 \\
\hline
6 & -1 \\
\hline
\end{array}
\][/tex]

What is the range of the given function?

A. [tex]\(\{x \mid x=-5,1,4,6\}\)[/tex]

B. [tex]\(\{y \mid y=-7,-1,0,9\}\)[/tex]

C. [tex]\(\{x \mid x=-7,-5,-1,0,1,4,6,9\}\)[/tex]

D. [tex]\(\{y \mid y=-7,-5,-1,0,1,4,6,9\}\)[/tex]



Answer :

Sure, let's find the range of the given function based on the table provided. The table shows a set of input-output pairs (x, y). The values of [tex]\(y\)[/tex] for each corresponding [tex]\(x\)[/tex] are provided.

Here is the table again for reference:

[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -5 & 9 \\ \hline 1 & 0 \\ \hline 4 & -7 \\ \hline 6 & -1 \\ \hline \end{array} \][/tex]

The range of the function consists of all possible output values (y-values) for the given inputs. Let's list down all the y-values from the table:

- For [tex]\( x = -5 \)[/tex], [tex]\( y = 9 \)[/tex]
- For [tex]\( x = 1 \)[/tex], [tex]\( y = 0 \)[/tex]
- For [tex]\( x = 4 \)[/tex], [tex]\( y = -7 \)[/tex]
- For [tex]\( x = 6 \)[/tex], [tex]\( y = -1 \)[/tex]

Therefore, the set of y-values is [tex]\(\{9, 0, -7, -1\}\)[/tex].

Next, let's sort this set of y-values in ascending order to match the choices given:

Sorted y-values: [tex]\([-7, -1, 0, 9]\)[/tex]

Thus, the range of the given function is:

[tex]\[ \{y \mid y = -7, -1, 0, 9\} \][/tex]

Hence, the correct answer is:

[tex]\[ \{y \mid y = -7, -1, 0, 9\} \][/tex]