The table shows ordered pairs of the function [tex]\( y = 8 - 2x \)[/tex]. What is the value of [tex]\( y \)[/tex] when [tex]\( x = 8 \)[/tex]?

[tex]\[
\begin{tabular}{|c|c|}
\hline
x & y \\
\hline
-3 & 14 \\
\hline
-1 & 10 \\
\hline
1 & 6 \\
\hline
4 & 0 \\
\hline
8 & ? \\
\hline
10 & -12 \\
\hline
\end{tabular}
\][/tex]

A. [tex]\(-20\)[/tex]



Answer :

To determine the value of [tex]\( y \)[/tex] given the function [tex]\( y = 8 - 2x \)[/tex] when [tex]\( x = 8 \)[/tex], we'll proceed step-by-step:

1. Start by writing the function:
[tex]\[ y = 8 - 2x \][/tex]

2. Substitute [tex]\( x = 8 \)[/tex] into the function:
[tex]\[ y = 8 - 2(8) \][/tex]

3. Perform the multiplication inside the parentheses:
[tex]\[ y = 8 - 16 \][/tex]

4. Finally, subtract 16 from 8:
[tex]\[ y = -8 \][/tex]

Therefore, the value of [tex]\( y \)[/tex] when [tex]\( x = 8 \)[/tex] is [tex]\( -8 \)[/tex].