Q6. If [tex]\( 81y^2 - k = \left( 9y + \frac{1}{2} \right) \left( 9y - \frac{1}{2} \right) \)[/tex], then the value of [tex]\( k \)[/tex] is:

a) 0
b) [tex]\( \frac{1}{4} \)[/tex]
c) [tex]\( \frac{1}{2} \)[/tex]
d) [tex]\( \frac{1}{\sqrt{2}} \)[/tex]



Answer :

To find the value of [tex]\( k \)[/tex] in the equation [tex]\( 81y^2 - k = (9y + \frac{1}{2})(9y - \frac{1}{2}) \)[/tex], we can begin by simplifying the right-hand side of the equation.

1. Simplify the Right-Hand Side:

We have to expand the expression [tex]\( (9y + \frac{1}{2})(9y - \frac{1}{2}) \)[/tex].

Recall the difference of squares formula:
[tex]\[ (a + b)(a - b) = a^2 - b^2 \][/tex]
Here, [tex]\( a = 9y \)[/tex] and [tex]\( b = \frac{1}{2} \)[/tex].

Applying the difference of squares formula:
[tex]\[ (9y + \frac{1}{2})(9y - \frac{1}{2}) = (9y)^2 - \left(\frac{1}{2}\right)^2 \][/tex]

2. Calculate Each Term:

[tex]\[ (9y)^2 = 81y^2 \][/tex]
[tex]\[ \left(\frac{1}{2}\right)^2 = \frac{1}{4} \][/tex]

Substitution these values in the equation:
[tex]\[ (9y + \frac{1}{2})(9y - \frac{1}{2}) = 81y^2 - \frac{1}{4} \][/tex]

3. Setting the Expanded Form Equal to the Left-Hand Side:

The given equation is:
[tex]\[ 81y^2 - k = 81y^2 - \frac{1}{4} \][/tex]

Since [tex]\( 81y^2 \)[/tex] is on both sides, we can cancel them out, leaving:
[tex]\[ -k = -\frac{1}{4} \][/tex]

4. Solve for [tex]\( k \)[/tex]:
[tex]\[ k = \frac{1}{4} \][/tex]

Thus, the value of [tex]\( k \)[/tex] is [tex]\(\boxed{\frac{1}{4}}\)[/tex].