Let's work through this problem step by step.
1. First, calculate [tex]\(70^2\)[/tex]:
[tex]\[
70^2 = 4900.
\][/tex]
2. Next, divide [tex]\(4900\)[/tex] by [tex]\(52\)[/tex]:
[tex]\[
\frac{4900}{52} \approx 94.23076923076923.
\][/tex]
3. Now, take the result from the previous step and divide it by [tex]\(2\)[/tex]:
[tex]\[
\frac{94.23076923076923}{2} \approx 47.11538461538461.
\][/tex]
4. Multiply this result by [tex]\(\pi\)[/tex] (using the approximation [tex]\(\pi \approx 3.14\)[/tex]):
[tex]\[
47.11538461538461 \times 3.14 \approx 147.56107692307695.
\][/tex]
5. Finally, multiply this result by [tex]\(0.33\)[/tex]:
[tex]\[
147.56107692307695 \times 0.33 \approx 48.82096153846154.
\][/tex]
Thus, the final result is approximately [tex]\(48.82096153846154\)[/tex].