Which is equivalent to [tex]\((\sqrt[4]{10})^{3x}\)[/tex]?

A. [tex]\((\sqrt[3]{10})^{4x}\)[/tex]

B. [tex]\((\sqrt[4]{10})^{3x}\)[/tex]

C. [tex]\((\sqrt[6]{10})^{4x}\)[/tex]

D. [tex]\((\sqrt[8]{10})^{3x}\)[/tex]



Answer :

To determine which expression is equivalent to [tex]\(\sqrt{10} \cdot \frac{3}{4} x\)[/tex], we need to simplify [tex]\(\sqrt{10} \cdot \frac{3}{4} x\)[/tex] and then compare it to the given options.

1. Simplifying [tex]\(\sqrt{10} \cdot \frac{3}{4} x\)[/tex]:

We start with the given expression:
[tex]\[ \sqrt{10} \cdot \frac{3}{4} x \][/tex]

Recall that [tex]\(\sqrt{10}\)[/tex] is the same as [tex]\(10^{1/2}\)[/tex]:
[tex]\[ \sqrt{10} = 10^{1/2} \][/tex]

Therefore, the expression becomes:
[tex]\[ 10^{1/2} \cdot \frac{3}{4} x \][/tex]

This can be rewritten to show the exponent more clearly:
[tex]\[ 10^{(1/2) \cdot \frac{3}{4} x} \][/tex]

Simplify the exponent:
[tex]\[ 10^{(3 x / 4) / 2} = 10^{3x / 8} \][/tex]

2. Analyzing the given options:

- Option 1: [tex]\((\sqrt[3]{10})^{4 x}\)[/tex]
[tex]\[ (\sqrt[3]{10})^{4x} = (10^{1/3})^{4x} = 10^{(4x/3)} \][/tex]

- Option 2: [tex]\((\sqrt[4]{10})^{3 x}\)[/tex]
[tex]\[ (\sqrt[4]{10})^{3x} = (10^{1/4})^{3x} = 10^{(3x/4)} \][/tex]

- Option 3: [tex]\((\sqrt[6]{10})^{4 x}\)[/tex]
[tex]\[ (\sqrt[6]{10})^{4x} = (10^{1/6})^{4x} = 10^{(4x/6)} = 10^{(2x/3)} \][/tex]

- Option 4: [tex]\((\sqrt[8]{10})^{3 x}\)[/tex]
[tex]\[ (\sqrt[8]{10})^{3x} = (10^{1/8})^{3x} = 10^{(3x/8)} \][/tex]

3. Comparing the simplified expression to the options:

From the simplification, we found that:
[tex]\[ \sqrt{10} \cdot \frac{3}{4} x = 10^{3x/8} \][/tex]

Among the options, this matches:
[tex]\[ (\sqrt[8]{10})^{3 x} = 10^{(3x/8)} \][/tex]

Therefore, the expression equivalent to [tex]\(\sqrt{10} \cdot \frac{3}{4} x\)[/tex] is:
[tex]\[ (\sqrt[8]{10})^{3 x} \][/tex]