Answered

The density of gold is [tex]\(19.3 \, g/cm^3\)[/tex]. What is the volume of a [tex]\(13 \, g\)[/tex] gold nugget? (Density: [tex]\(D = \frac{m}{v}\)[/tex])

A. [tex]\(0.25 \, cm^3\)[/tex]
B. [tex]\(0.67 \, cm^3\)[/tex]
C. [tex]\(1.48 \, cm^3\)[/tex]
D. [tex]\(2.50 \, cm^3\)[/tex]



Answer :

To solve for the volume of a gold nugget given its density and mass, we can use the formula for density:

[tex]\[ D = \frac{m}{v} \][/tex]

where [tex]\( D \)[/tex] is the density, [tex]\( m \)[/tex] is the mass, and [tex]\( v \)[/tex] is the volume. Rearranging this formula to solve for volume [tex]\( v \)[/tex], we get:

[tex]\[ v = \frac{m}{D} \][/tex]

Given:
- The density of gold ([tex]\( D \)[/tex]) is [tex]\( 19.3 \, \text{g/cm}^3 \)[/tex].
- The mass of the gold nugget ([tex]\( m \)[/tex]) is [tex]\( 13 \, \text{g} \)[/tex].

Now, plug in the given values:

[tex]\[ v = \frac{13 \, \text{g}}{19.3 \, \text{g/cm}^3} \][/tex]

Performing the division, we find:

[tex]\[ v \approx 0.6735751295336787 \, \text{cm}^3 \][/tex]

Therefore, the volume of the 13-gram gold nugget is approximately [tex]\( 0.67 \, \text{cm}^3 \)[/tex].

Among the given options:
- [tex]\( 0.25 \, \text{cm}^3 \)[/tex]
- [tex]\( 0.67 \, \text{cm}^3 \)[/tex]
- [tex]\( 1.48 \, \text{cm}^3 \)[/tex]
- [tex]\( 2.50 \, \text{cm}^3 \)[/tex]

The correct choice is:

[tex]\[ \boxed{0.67 \, \text{cm}^3} \][/tex]