Express the following in simplest [tex]\( a + b i \)[/tex] form.

[tex]\[
\sqrt{9}+\sqrt{-36}
\][/tex]

A. [tex]\(-9i\)[/tex]
B. [tex]\(3 - 6i\)[/tex]
C. [tex]\(3 + 6i\)[/tex]
D. [tex]\(9i\)[/tex]



Answer :

Sure, let's simplify the given expression [tex]\( \sqrt{9} + \sqrt{-36} \)[/tex] and express it in the form [tex]\( a + bi \)[/tex].

Firstly, let's tackle each term separately:

1. Simplifying [tex]\( \sqrt{9} \)[/tex]:
[tex]\[ \sqrt{9} = 3 \][/tex]

2. Simplifying [tex]\( \sqrt{-36} \)[/tex]:
[tex]\[ \sqrt{-36} = \sqrt{36 \cdot (-1)} = \sqrt{36} \cdot \sqrt{-1} \][/tex]
We know that [tex]\( \sqrt{36} = 6 \)[/tex] and [tex]\( \sqrt{-1} = i \)[/tex], where [tex]\( i \)[/tex] is the imaginary unit.
Thus,
[tex]\[ \sqrt{-36} = 6i \][/tex]

Now, let's combine the simplified terms:
[tex]\[ \sqrt{9} + \sqrt{-36} = 3 + 6i \][/tex]

So, the expression [tex]\( \sqrt{9} + \sqrt{-36} \)[/tex] simplified in the form [tex]\( a + bi \)[/tex] is [tex]\( 3 + 6i \)[/tex].

Therefore, the correct answer is:
[tex]\[ \boxed{3 + 6i} \][/tex]