The table represents a function.

[tex]\[
\begin{tabular}{|c|c|}
\hline
$x$ & $f(x)$ \\
\hline
-6 & 3 \\
\hline
-2 & 1 \\
\hline
0 & 4 \\
\hline
3 & -2 \\
\hline
\end{tabular}
\][/tex]

What is [tex]\( f(-2) \)[/tex]?

A. -3
B. -1
C. 1
D. 3



Answer :

To determine the value of [tex]\( f(-2) \)[/tex] from the given function table, we need to locate the row where [tex]\( x = -2 \)[/tex] and then find the corresponding [tex]\( f(x) \)[/tex] value.

Here is the table again for reference:

[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline -6 & 3 \\ \hline -2 & 1 \\ \hline 0 & 4 \\ \hline 3 & -2 \\ \hline \end{array} \][/tex]

Looking at the table:

- When [tex]\( x = -6 \)[/tex], [tex]\( f(x) = 3 \)[/tex]
- When [tex]\( x = -2 \)[/tex], [tex]\( f(x) = 1 \)[/tex]
- When [tex]\( x = 0 \)[/tex], [tex]\( f(x) = 4 \)[/tex]
- When [tex]\( x = 3 \)[/tex], [tex]\( f(x) = -2 \)[/tex]

So, we need to find [tex]\( f(-2) \)[/tex]:

When [tex]\( x = -2 \)[/tex], [tex]\( f(x) = 1 \)[/tex].

Therefore, [tex]\( f(-2) \)[/tex] is 1.

So, the correct answer is [tex]\( 1 \)[/tex].