Which of the expressions are equivalent to the one below? Check all that apply.

[tex]\[
(14 + 4) \div 6
\][/tex]

A. [tex]\((14 + 6) \div 4\)[/tex]

B. [tex]\((4 + 14) \div 6\)[/tex]

C. [tex]\(14 \cdot (4 + 6)\)[/tex]

D. [tex]\((4 + 6) \cdot (14 + 6)\)[/tex]



Answer :

To determine which expressions are equivalent to [tex]\((14+4) \div 6\)[/tex], we need to evaluate each option and compare the results. Here is a detailed analysis of each expression:

1. Evaluate [tex]\((14 + 4) \div 6\)[/tex]:
[tex]\[ (14 + 4) \div 6 = 18 \div 6 = 3 \][/tex]

2. Evaluate each provided expression:

- A. [tex]\((14 + 6) \div 4\)[/tex]:
[tex]\[ (14 + 6) \div 4 = 20 \div 4 = 5 \][/tex]
This results in 5, which is not equivalent to 3.

- B. [tex]\((4 + 14) \div 6\)[/tex]:
[tex]\[ (4 + 14) \div 6 = 18 \div 6 = 3 \][/tex]
This results in 3, which is equivalent to 3.

- C. [tex]\(14 \cdot (4 + 6)\)[/tex]:
[tex]\[ 14 \cdot (4 + 6) = 14 \cdot 10 = 140 \][/tex]
This results in 140, which is not equivalent to 3.

- D. [tex]\((4 + 6) \cdot (14 + 6)\)[/tex]:
[tex]\[ (4 + 6) \cdot (14 + 6) = 10 \cdot 20 = 200 \][/tex]
This results in 200, which is not equivalent to 3.

Based on the evaluations, the expressions equivalent to [tex]\((14+4) \div 6\)[/tex] are:

- B. [tex]\((4 + 14) \div 6\)[/tex]

Therefore, the correct answer is:
```
B. [tex]\((4 + 14) \div 6\)[/tex]
```