Solve the system of equations below.

[tex]\[
\begin{array}{c}
4x + y = 16 \\
2x + 3y = -2
\end{array}
\][/tex]

A. [tex]\((5, -4)\)[/tex]
B. [tex]\((-5, 4)\)[/tex]
C. [tex]\((5, 4)\)[/tex]
D. [tex]\((4, -5)\)[/tex]



Answer :

To solve the given system of linear equations:
[tex]\[ \begin{cases} 4x + y = 16 \\ 2x + 3y = -2 \end{cases} \][/tex]

we can use the method of substitution or elimination, but here we'll use elimination for a straightforward solution.

1. Express the system of equations:
[tex]\[ \begin{cases} 4x + y = 16 \quad \text{(1)} \\ 2x + 3y = -2 \quad \text{(2)} \end{cases} \][/tex]

2. Multiply equation (2) by 2 to align the coefficients of [tex]\( x \)[/tex]:
[tex]\[ 4x + y = 16 \quad \text{(1)} \][/tex]
[tex]\[ 4x + 6y = -4 \quad \text{(3)} \][/tex]

3. Subtract equation (1) from equation (3):
[tex]\[ (4x + 6y) - (4x + y) = -4 - 16 \][/tex]
Simplify the left-hand side and the right-hand side:
[tex]\[ 4x + 6y - 4x - y = -20 \][/tex]
[tex]\[ 5y = -20 \][/tex]
Now, solve for [tex]\( y \)[/tex]:
[tex]\[ y = \frac{-20}{5} = -4 \][/tex]

4. Substitute [tex]\( y = -4 \)[/tex] back into equation (1) to find [tex]\( x \)[/tex]:
[tex]\[ 4x + (-4) = 16 \][/tex]
Simplify:
[tex]\[ 4x - 4 = 16 \][/tex]
Add 4 to both sides:
[tex]\[ 4x = 20 \][/tex]
Divide by 4:
[tex]\[ x = \frac{20}{4} = 5 \][/tex]

5. Conclusion:
The solution to the system of equations is [tex]\( (x, y) = (5, -4) \)[/tex].

Therefore, the correct answer is:
[tex]\[ \boxed{(5, -4)} \][/tex] which corresponds to option A.

Other Questions