Solve [tex]\(6x - 2y = 10\)[/tex] for [tex]\(y\)[/tex].

A. [tex]\(y = -6x + 10\)[/tex]

B. [tex]\(y = 6x + 5\)[/tex]

C. [tex]\(y = 3x - 5\)[/tex]

D. [tex]\(y = 3x - 10\)[/tex]



Answer :

To solve the equation [tex]\( 6x - 2y = 10 \)[/tex] for [tex]\( y \)[/tex], we can follow these steps:

1. Start with the given equation:
[tex]\[ 6x - 2y = 10 \][/tex]

2. To isolate [tex]\( y \)[/tex], first move the [tex]\( 6x \)[/tex] term to the right side of the equation. Subtract [tex]\( 6x \)[/tex] from both sides:
[tex]\[ -2y = -6x + 10 \][/tex]

3. Now, to solve for [tex]\( y \)[/tex], divide both sides by [tex]\(-2\)[/tex]:
[tex]\[ y = \frac{-6x + 10}{-2} \][/tex]

4. Simplify the right side by dividing each term individually by [tex]\(-2\)[/tex]:
[tex]\[ y = \frac{-6x}{-2} + \frac{10}{-2} \][/tex]

5. Simplify the fractions:
[tex]\[ y = 3x - 5 \][/tex]

Therefore, the correct solution is [tex]\( y = 3x - 5 \)[/tex].

The correct answer is:
C. [tex]\( y = 3x - 5 \)[/tex]